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Impact Oscillators

» Many engineering systems involve vibrations and impacts, e.g. impact print
hammers, gear assemblies, machinery for milling, bells, and shock absorbers.

Figure: Examples of simple impacting systems: (a) a bell, (b) a gear assembly, (c) an
impact print hammer. Picture taken from di Bernardo, Champneys, Budd, Kowalczyk,
2008.



The impact oscillator model
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Figure: A hard-impact oscillator model: & + b% 4+ « + 1 = F cos(wt) and & +— —rd whenever
z=0.
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> If the block hits the wall with zero velocity, this is a grazing impact.

> A grazing bifurcation occurs when the limit cycle has a grazing impact.
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Experimental example
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Figure: Bifurcation diagram obtained from the paper by Pavlovskaia et al., Int. J. Bifurcation
Chaos, 2010.
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Figure: Bifurcation diagram obtained from the paper by Pavlovskaia et al., Int. J. Bifurcation
Chaos, 2010.

> Why does a stable period-two solution appear so close to grazing?
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Model

» The nondimensionalised equations of our oscillator model are given by

T =y,

gy = Fcos(wt) —by —x — 1,

where x(t) and y(t) are the displacement and the velocity of the oscillator with the
damping ratio b > 0.

> We treat F' as the primary bifurcation parameter.

» The values of F' and ¢ that occur at grazing are implicitly given by

I bw
tgraz = ; tan 1—w2 )’

F2. = (1—w?)?+ %2

graz




Typical phase portrait

Figure: A typical phase portrait of the impact oscillator.



Bifurcation diagram
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Figure: A typical bifurcation diagram of the impact oscillator.
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Figure: An illustration of the Poincaré map.
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Figure: An illustration of the Poincaré map.

» We use y = 0 as the Poincaré section. The map is given by (2/,2') = P(x, 2)
where z =t — t4,, mod %’T

> We evaluate P numerically, using an explicit formula for the flow, and event
detection for determining where orbits return to the Poincaré section.
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» The map P can be expressed as
P = Pglobal © Pdisc‘

» Here

Pdisc(xa Z3 F) =

x> 0.




Poincaré map

» To first order, the Taylor expansion of Pyiha about (z, z; F') = (0, 0; Fyraz) can be

written as
x F— Fgraz 1-— ail
— L 2
Palobal = K [2] + Fores [ . +0(2),
where
2
ail woa2
K [am a ]
w2 22

and each a;; is the (i, j) entry of

(]S )



Poincaré map

» Note that
)\162?”2 - )\262?”2 eTN _ i
ayl = A — A > a12 = ﬁa
a1 = —ay2, az = (AL +b)e=r — (Mg + b)e%ﬂ/\l,
Al — Ao

where K has eigenvalues \1 2 = o £+ if3.



Poincaré map
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Poincaré map

» Note that
27
)\16 w )\26 A2
ail = alg =
A1 — Ao ’
a1 = —a12, agg =

where K has eigenvalues \1 2 = o £+ if3.
» Here,

o= —=, ﬁ:
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> Also K has trace 7 = 2¢ 5" cos (2”ﬂ) and determinant d = e w .
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» For a period-p solution of our map P with one point in z > 0, this point is a fixed
point of Pgobal o Pjisc.R-

» Maximal periodic solutions are those with exactly one point in > 0 (such
periodic solutions are the most likely to be stable because the square-root
singularity is highly destabilising)

» Since Péobal o Pyisc,r is smooth, standard numerical methods like Newton's
method can be used to follow fixed points while 2 > 0.

» That is, given a guess for (xg, z0), we compute (y1,21), (y2,22), and (x3, z3), and

(x4,24) = Pgobal(xg,zg; F). Then let G(zo, z0; F) = (x4, 24) — (0, 20) and

continue zeros of G.

instantaneous
velocity
reversal




Numerics

» However, Newton's method fails near grazing because Pgisc g contains y/z (if
x < 0, the method blows up!).
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Numerics

» However, Newton's method fails near grazing because Pgisc g contains y/z (if
x < 0, the method blows up!).
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Numerics

» So instead we guess (y1, 21), then compute (zg, 2z0), (Y2, 22), and (x3, 23), and

(74, 24) = Py (23, 233 ). Then let V(y1, 215 F) = (w4, 24) — (0, 20).
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Numerics

» So instead we guess (y1, 21), then compute (zg, 2z0), (Y2, 22), and (x3, 23), and
(74, 24) = Py (23, 233 ). Then let V(y1, 215 F) = (w4, 24) — (0, 20).

» The function V' maps the impact velocity and z-value to the variation (or change)
in displacement and z-value.

» We call the function V as the VIVID function that follows the zeros of a function
mapping Velocity Into Variation In Displacement.



One-parameter bifurcation diagram
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One-parameter bifurcation diagram

Saddle node, w = 0.799
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Two-parameter bifurcation diagram

> We are able to compute the two-parameter bifurcation diagram because of our
new numerical tool.



Two-parameter bifurcation diagram

> We are able to compute the two-parameter bifurcation diagram because of our
new numerical tool.

» The location of the codimension-two point is understood.
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Resonance

» Branches of maximal periodic solutions emanate from the grazing bifurcation,
either to the left or the right, and Nordmark (Nonlinearity, 2001) showed that this
is determined by the values of 7 and §.
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» Branches of maximal periodic solutions emanate from the grazing bifurcation,
either to the left or the right, and Nordmark (Nonlinearity, 2001) showed that this
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Figure: Division of the (7, d) plane.
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Resonance

» The eigenvalues of K are complex, and thus can be written as \; o = rexp(=+if),
where r >0 and 0 < 0 < .

» Thus, we have 7 = 2rcos(f) and § = r2,

» The period-p solution changes from emanating to the left to emanating to the
right when sin(pf) = 0.

» In particular with p = 2 this is 7 = 0, which corresponds to your codimension-two
point.

» Solving which we get a rational ratio of w and /3 given by

4

w
B 5

corresponding to resonance.
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Conclusion

» We have shown that the oscillator has a stable period-two solution near grazing
because it is near resonance.

» We have developed a new numerical tool called VIVID using which the issue of
"numerical algorithms falling off the side of square-root near grazing" is
circumvented.

» We produce two-parameter bifurcation diagrams showing curves of saddle-node and
period-doubling bifurcation emanating from a codimension-two grazing bifurcation.
» However, it remains to unfold such codimension-two points theoretically (and we

have started to work on this). Hopefully, this can explain why the SN curve bends
away from Fj;,, faster than the PD curve.
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