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Impact Oscillators

▶ Many engineering systems involve vibrations and impacts, e.g. impact print
hammers, gear assemblies, machinery for milling, bells, and shock absorbers.

Figure: Examples of simple impacting systems: (a) a bell, (b) a gear assembly, (c) an
impact print hammer. Picture taken from di Bernardo, Champneys, Budd, Kowalczyk,
2008.



The impact oscillator model
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Figure: A hard-impact oscillator model: ẍ+ bẋ+ x+ 1 = F cos(ωt) and ẋ 7→ −rẋ whenever
x = 0.

▶ If the block hits the wall with zero velocity, this is a grazing impact.
▶ A grazing bifurcation occurs when the limit cycle has a grazing impact.



The impact oscillator model

x(t)

blockF cos(ωt)b

k

x(t) = 0

wall

Figure: A hard-impact oscillator model: ẍ+ bẋ+ x+ 1 = F cos(ωt) and ẋ 7→ −rẋ whenever
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Experimental example

Figure: Bifurcation diagram obtained from the paper by Pavlovskaia et al., Int. J. Bifurcation
Chaos, 2010.

▶ Why does a stable period-two solution appear so close to grazing?
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Model

▶ The nondimensionalised equations of our oscillator model are given by

ẋ = y,

ẏ = F cos(ωt)− by − x− 1,

where x(t) and y(t) are the displacement and the velocity of the oscillator with the
damping ratio b > 0.

▶ We treat F as the primary bifurcation parameter.
▶ The values of F and t that occur at grazing are implicitly given by

tgraz =
1

ω
tan−1

(
bω

1− ω2

)
,

F 2
graz = (1− ω2)2 + b2ω2.
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Typical phase portrait

Figure: A typical phase portrait of the impact oscillator.



Bifurcation diagram

Figure: A typical bifurcation diagram of the impact oscillator.



Poincaré map

Figure: An illustration of the Poincaré map.

▶ We use y = 0 as the Poincaré section. The map is given by (x′, z′) = P (x, z)
where z = t− tgraz mod 2π

ω .
▶ We evaluate P numerically, using an explicit formula for the flow, and event

detection for determining where orbits return to the Poincaré section.
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Poincaré map

▶ The map P can be expressed as

P = Pglobal ◦ Pdisc.

▶ Here

Pdisc(x, z;F ) =



[
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z

]
, x ≤ 0,
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Poincaré map

▶ To first order, the Taylor expansion of Pglobal about (x, z;F ) = (0, 0;Fgraz) can be
written as

Pglobal = K

[
x
z

]
+

F − Fgraz

Fgraz

[
1− a11
−a21

]
+O(2),

where

K =

[
a11 ω2a12
a21
ω2 a22

]
,

and each aij is the (i, j) entry of

A = exp

(
2π

ω

[
0 1
−1 −b

])
.



Poincaré map
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where K has eigenvalues λ1,2 = α± iβ.

▶ Here,

α = − b

2
, β =
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4
.

▶ Also K has trace τ = 2e
2πα
ω cos

(
2πβ
ω

)
and determinant δ = e

4πα
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Numerics

▶ For a period-p solution of our map P with one point in x > 0, this point is a fixed
point of P p

global ◦ Pdisc,R.

▶ Maximal periodic solutions are those with exactly one point in x > 0 (such
periodic solutions are the most likely to be stable because the square-root
singularity is highly destabilising)

▶ Since P p
global ◦ Pdisc,R is smooth, standard numerical methods like Newton’s

method can be used to follow fixed points while x > 0.
▶ That is, given a guess for (x0, z0), we compute (y1, z1), (y2, z2), and (x3, z3), and

(x4, z4) = P p
global(x3, z3;F ). Then let G(x0, z0;F ) = (x4, z4)− (x0, z0) and

continue zeros of G.
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Numerics

▶ However, Newton’s method fails near grazing because Pdisc,R contains
√
x (if

x < 0, the method blows up!).
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Numerics

▶ So instead we guess (y1, z1), then compute (x0, z0), (y2, z2), and (x3, z3), and
(x4, z4) = P p

global(x3, z3;F ). Then let V (y1, z1;F ) = (x4, z4)− (x0, z0).

▶ The function V maps the impact velocity and z-value to the variation (or change)
in displacement and z-value.

▶ We call the function V as the VIVID function that follows the zeros of a function
mapping Velocity Into Variation In Displacement.
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Two-parameter bifurcation diagram

▶ We are able to compute the two-parameter bifurcation diagram because of our
new numerical tool.

▶ The location of the codimension-two point is understood.
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Resonance

▶ Branches of maximal periodic solutions emanate from the grazing bifurcation,
either to the left or the right, and Nordmark (Nonlinearity, 2001) showed that this
is determined by the values of τ and δ.

▶

Figure: Division of the (τ, δ) plane.
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Resonance

▶ The eigenvalues of K are complex, and thus can be written as λ1,2 = r exp(±iθ),
where r > 0 and 0 < θ < π.

▶ Thus, we have τ = 2r cos(θ) and δ = r2.
▶ The period-p solution changes from emanating to the left to emanating to the

right when sin(pθ) = 0.
▶ In particular with p = 2 this is τ = 0, which corresponds to your codimension-two

point.
▶ Solving which we get a rational ratio of ω and β given by

ω

β
=

4

5

corresponding to resonance.
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Conclusion

▶ We have shown that the oscillator has a stable period-two solution near grazing
because it is near resonance.

▶ We have developed a new numerical tool called VIVID using which the issue of
"numerical algorithms falling off the side of square-root near grazing" is
circumvented.

▶ We produce two-parameter bifurcation diagrams showing curves of saddle-node and
period-doubling bifurcation emanating from a codimension-two grazing bifurcation.

▶ However, it remains to unfold such codimension-two points theoretically (and we
have started to work on this). Hopefully, this can explain why the SN curve bends
away from Fgraz faster than the PD curve.
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