Dynamical properties of neuron models–nodal and collective behaviours.

Indranil Ghosh

School of Mathematical and Computational Sciences Massey University, Palmerston North, New Zealand

August 14, 2024

KID KARA KE KE KE A RO

Neurons as Dynamical units

- ▶ Neurons represent the fundamental dynamical units of the nervous system
- \triangleright The dynamics of neurons, like firing of action potentials, can be modeled as simple dynamical systems like ODEs or maps

Figure: Two neurons connected by a synapse. (Powered by DALL-E 3)

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Chialvo Map (Chialvo, 1995)

The two-dimensional neuron map is given by

$$
x_{n+1} = x_n^2 e^{(y_n - x_n)} + k_0,
$$

$$
y_{n+1} = ay_n - bx_n + c.
$$

- \triangleright The state variables x and y represent the activation variable and recovery-like variable,
- \blacktriangleright a, b, c and k_0 are the system parameters,
- \blacktriangleright $a < 1$ is the time constant of recovery,
- \blacktriangleright $b < 1$ represents the activation dependence of the recovery process,
- \blacktriangleright c denotes the offset, and
- \triangleright k_0 is the time-independent additive perturbation.

A Typical Phase Portrait

K ロ X x 4 → K 差 X X 差 → X 差 → の Q Q →

Electromagnetic flux

We describe the effects of electromagnetic flux on the system of neurons with memristors. The induction current due to electromagnetic flux is given by

$$
\frac{dq(\phi)}{dt} = \frac{dq(\phi)}{d\phi}\frac{d\phi}{dt} = M(\phi)\frac{d\phi}{dt} = kM(\phi)x.
$$

- \triangleright ϕ : electromagnetic flux across the neuron membranes,
- \triangleright k: electromagnetic flux coupling strength, &
- \blacktriangleright $M(\phi)$: memconductance of electromagnetic flux controlled memristor. We consider the following memconductance function:

$$
M(\phi) = \alpha + 3\beta\phi^2.
$$

Improved Chialvo map under electromagnetic flux (Muni, Fatoyinbo, & Ghosh, 2022)

International Journal of Bifurcation and Chaos, Vol. 32, No. 9 (2022) 2230020 (26 pages) @ World Scientific Publishing Company DOI: 10.1142/S0218127422300208

Dynamical Effects of Electromagnetic Flux on Chialvo Neuron Map: Nodal and Network Behaviors

Sishu Shankar Muni^{*,†,‡}, Hammed Olawale Fatovinbo^{†,§} and Indranil Ghosh^{†,¶} *Department of Physical Sciences. Indian Institute of Science and Educational Research Kolkata. Campus Road, Mohanpur, West Bengal 741246, India ^tSchool of Mathematical and Computational Sciences. Massey University, Colombo Road, Palmerston North, 4410, New Zealand $\frac{1}{2}$ sishu 1729@ijserkol.gc.in $\frac{1}{3}$ s. muni@massey. ac. nz \mathcal{F}_h . fatoyinbo@massey.ac.nz $\P_{i, \, ghost}$ @massey.ac.nz

Received January 11, 2022; Revised May 4, 2022

KOD KAR KED KED E YOUR

Improved Chialvo map under electromagnetic flux (Muni, Fatoyinbo, & Ghosh, 2022)

Under the action of electromagnetic flux, the system of Chialvo map is improved to the following map:

$$
x_{n+1} = x_n^2 e^{(y_n - x_n)} + k_0 + k x_n M(\phi_n),
$$

\n
$$
y_{n+1} = ay_n - bx_n + c,
$$

\n
$$
\phi_{n+1} = k_1 x_n - k_2 \phi_n,
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

making the system a three-dimensional smooth map. The new variables α, β, k_1, k_2 represent the electromagnetic flux parameters.

Multistability

メロトメ 御 トメ 君 トメ 君 ト 重 299

Bifurcation structures and antimonotonicity

Figure: Bifurcation diagram of x with respect to k in panel (a). A maximal Lyapunov exponent diagram is shown in panel (b).

Bifurcation structures and antimonotonicity

Figure: In (a) a stable fixed point is shown in the $x - y - \phi$ phase space for $a = 0.838$. After a supercritical Neimark-Sacker bifurcation, an attracting closed invariant curve is born as shown in (b) at $a = 0.841$. A chaotic attractor is then formed when a is increased to 0.88.

Numerical bifurcation analysis

Table: Abbreviations of codimension-1 and codimension-2 bifurcations

Numerical bifurcation analysis

KOD KAR KED KED E YOUR

Figure: (a) Codimension-1 bifurcation diagram with k as bifurcation parameter. (b) Codimesion-2 bifurcation diagram in (k, c) -parameter plane. (c) Zoomed version of (b)

Bursting and spiking features

Ring-star network for multiple neurons

Figure: (a) Ensemble of connected neurons. (Powered by DALL-E 3). (b) Ring-star network of Chialvo neuron system.

Ring-star network for multiple neurons

▶ The mathematical model for the ring-star connected Chialvo neuron map under electromagnetic flux is defined as:

$$
x_m(n+1) = x_m(n)^2 e^{y_m(n) - x_m(n)} + k_0 + kx_m(n)M(\phi_m(n))
$$

+ $\mu(x_m(n) - x_1(n)) + \frac{\sigma}{2R} \sum_{i=m-R}^{m+R} (x_i(n) - x_m(n)),$
 $y_m(n+1) = ay_m(n) - bx_m(n) + c,$
 $\phi_m(n+1) = k_1x_m(n) - k_2\phi_m(n),$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Ring-star network for multiple neurons

 \blacktriangleright The central node is further defined as

$$
x_1(n+1) = x_1(n)^2 e^{(y_1(n)-x_1(n))} + k_0 + kx_1(n)M(\phi_1(n))
$$

+ $\mu \sum_{i=1}^N (x_i(n) - x_1(n)),$
 $y_1(n+1) = ay_1(n) - bx_1(n) + c,$
 $\phi_1(n+1) = k_1x_1(n) - k_2\phi_1(n),$

having the following boundary conditions:

$$
x_{m+N}(n) = x_m(n),
$$

\n
$$
y_{m+N}(n) = y_m(n),
$$

\n
$$
\phi_{m+N}(n) = \phi_m(n).
$$
\n(1)

Simulations

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Simulations

(d) Three-clustered state

Nonlinear Dyn (2023) 111:17499-17518 https://doi.org/10.1007/s11071-023-08717-y

KORK STRAIN A BAR STRAKER

ORIGINAL PAPER

On the analysis of a heterogeneous coupled network of memristive Chialyo neurons

Indranil Ghosh · Sishu Shankar Muni · **Hammed Olawale Fatoyinbo**

Figure: The star and ring coupling strengths are denoted by μ_m and σ_m for each node $m = 1, \ldots, N$ respectively. Different colors in the ring-star topology signify a range of heterogeneous values of μ_m and σ_m .

KORK STRAIN A BAR STRAKER

- \triangleright We introduce heterogeneities to the coupling strengths $\sigma_m(n)$ and $\mu_m(n)$ both in space and time.
- ▶ In space, the heterogeneities are realized following the application of a noise source with a uniform distribution given by

$$
\sigma_m(n) = \sigma_0 + D_\sigma \xi_\sigma^{m,n},\tag{2}
$$

$$
\mu_m(n) = \mu_0 + D_\mu \xi_\mu^{m,n},\tag{3}
$$

- \blacktriangleright Here σ_0 and μ_0 are the mean values of the coupling strengths μ_m and σ_m respectively.
- \triangleright We keep $\sigma_0 \in [-0.01, 0.01]$ and $\mu_0 \in [-0.001, 0.001]$.
- \blacktriangleright The noise sources ξ_{σ} and ξ_{μ} for the corresponding coupling strengths are real numbers randomly sampled from the uniform distribution [-0.001, 0.001].
- \blacktriangleright Finally, the D's refer to the "noise intensity" which we restrict in the range [0,0.1].

- \blacktriangleright Heterogeneity in time is introduced by considering the network having time-varying links depending on the two coupling probabilities P_μ and P_σ , which govern the update of the coupling topology with each iteration n .
- ▶ The probability with which the central node is connected to all the peripheral nodes at a particular *n* is denoted by P_{μ} .
- \blacktriangleright Likewise, the probability with which the peripheral nodes are connected to their R neighboring nodes is given by P_{σ} .
- \triangleright We employ three metrics to analyse our model: (1) cross-correlation coefficient, (2) synchronization error, and (3) Sample entropy

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

Quantitative metrics

 \blacktriangleright The general definition of the cross-coefficient denoted by $\Gamma_{i,m}$ is given by

$$
\Gamma_{i,m} = \frac{\langle \tilde{x}_i(n)\tilde{x}_m(n) \rangle}{\sqrt{\langle (\tilde{x}_i(n))^2 \rangle \langle (\tilde{x}_m(n))^2 \rangle}}.
$$
(4)

▶ The *averaged cross-correlation coefficient* over all the units of the network is given by,

$$
\Gamma = \frac{1}{N-1} \sum_{m=1, m \neq i}^{N} \Gamma_{i,m}.
$$
 (5)

4 0 > 4 4 + 4 = > 4 = > = + + 0 4 0 +

- \triangleright We use $\Gamma_{2,m}$, denoting the degree of correlation between the first peripheral node of the ring-star network and all the other nodes, including the central node.
- ▶ The average is calculated over time with transient dynamics removed and $\tilde{x}(n) = x(n) - \langle x(n) \rangle$.

▶ The averaged synchronization-error for the nodes in a system is given by

$$
E=\frac{1}{N-1}\sum_{m=1,m\neq 2}^{N}\langle |x_2(n)-x_m(n)|\rangle, \qquad (6)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

 \triangleright We again consider node number $N = 2$ as the baseline.

Simulations

Figure: Coherent and solitary nodes giving rise to a two-clustered state.
All the series of the

simulations

Figure: Mostly synced in the coherent domain with two solitary nodes.
All the second terms of the seco

Simulations

Figure: An almost definitive bifurcation boundary is observed. Solitary nodes appear around $\sigma_0 \sim 0$ and $\mu_0 > 0$.

Simulations

Figure: Comparison plots for the various measures. Figures (a) and (c) show an inverse trend whereas figure (b) shows a proportional trend.K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어 A bit of a digression! (Ghosh, Nair, Fatoyinbo, & Muni, 2024)

Eur. Phys. J. Plus (2024) 139:545 https://doi.org/10.1140/epip/s13360-024-05363-0

Regular Article

THE EUROPEAN PHYSICAL JOURNAL PLUS

KORK STRAIN A BAR STRAKER

Dynamical properties of a small heterogeneous chain network of neurons in discrete time

Indranil Ghosh^{1,a} (b), Anjana S. Nair^{2,b}, Hammed Olawale Fatoyinbo^{3,4,c}, Sishu Shankar Muni^{2,d}

¹ School of Mathematical and Computational Sciences, Massey University, Colombo Road, Palmerston North 4410, New Zealand

² School of Digital Sciences, Digital University Kerala, Technopark Phase-IV Campus, Mangalapuram, Kerala 695317, India

³ EpiCentre, School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand

⁴ Department of Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand

Received: 25 March 2024 / Accepted: 13 June 2024 © The Author(s) 2024

A bit of a digression! (Ghosh, Nair, Fatoyinbo, & Muni, 2024)

KORK STRAIN A BAR STRAKER

Figure: A heterogeneous network of a tri-oscillator chain composed of end nodes (Chialvo neuron map) and central node (Rulkov neuron map).

Higher-order smallest ring-star network (Nair, Ghosh, Fatoyinbo, & Muni, 2024)

On the higher-order smallest ring-star network of Chialvo neurons under diffusive couplings

AFFILIATIONS

¹School of Digital Sciences, Digital University Kerala, Technopark Phase-IV campus, Mangalapuram 695317, Kerala, India ²School of Mathematical and Computational Sciences, Massey University, Colombo Road, Palmerston North 4410, New Zealand ³ Department of Mathematical Sciences, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland 1142, New Zealand

KORKA BRADE KORA

a) Author to whom correspondence should be addressed: i.ghosh@massev.ac.nz

Higher-order smallest ring-star network (Nair, Ghosh, Fatoyinbo, & Muni, 2024)

Figure: In panel (a) the coupling strength within the star configuration is denoted by μ , while the coupling strength within the ring is denoted by $\sigma^{(1)}.$ Moreover, the coupling strength originated from the higher-order interactions is represented by $\sigma^{(2)}$, as indicated by the triplets in panels $(b) \rightarrow (e)$.

Model

This system in compact form is written as

$$
x_p(n+1) = x_p(n)^2 e^{(y_p(n)-x_p(n))} + k_0 + \mu(x_1(n) - x_p(n))
$$

+ $\sigma^{(1)} \sum_{i=2}^4 (x_i(n) - x_p(n))$
+ $\sigma^{(2)} \sum_{i=1}^4 \sum_{\substack{j=i+1 \ j \neq p \\ j \neq p}}^4 (x_i(n) + x_j(n) - 2x_p(n)),$ (7)

$$
y_p(n+1) = ay_p(n) - bx_p(n) + c,
$$
 (8)

K □ K K 라 K K 라 K X 라 X X X X X X X 라 다 X

Model

and

$$
x_1(n+1) = x_1(n)^2 e^{(y_1(n)-x_1(n))} + k_0 + \mu \sum_{i=2}^4 (x_i(n)-x_1(n))
$$

+ $\sigma^{(2)} \sum_{i=2}^4 \sum_{j=i+1}^4 (x_i(n)+x_j(n)-2x_1(n)),$ (9)

$$
y_1(n+1) = ay_1(n)-bx_1(n)+c.
$$
 (10)

K ロ X (御) X 경 X X 경 X (경) 경 X (0)

Simulations

Figure: Bifurcation plot of each node against the coupling strength $\sigma^{(2)}$ once simulated forward (points colored black) and once backward (points colored red).

KO KKOK KE KKE K E KORO

Simulations

Figure: Typical phase portraits. (a) fixed point, (b) period-doubling, (c) a disjoint cyclic quasiperiodic closed invariant curve, (d) chaos.

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

 $0 - 1$ test

Figure: Signal plots. (a) highly bounded trajectory, (b) slightly less bounded trajectory, (c) between bounded and diffusive, and (d) diffusive random walk corresponding to a Brownian motion with zero drift.K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Metrics

Figure: A bifurcation plot of the first node with $\sigma^{(2)}$ as the main bifurcation parameter. The corresponding value of K from the chaos test and SE for complexity are shown.

Denatured Morris-Lecar model (Fatoyinbo et al., 2022)

2022 International Conference on Decision Aid Sciences and Applications (DASA)

Numerical Bifurcation Analysis of Improved Denatured Morris-Lecar Neuron Model

Hammed Olawale Fatovinbo School of Mathematical and Computational Sciences **Massey University** Palmerston North, New Zealand h.fatoyinbo@massey.ac.nz ORCID: 0000-0002-6036-2957

Indranil Ghosh School of Mathematical and Computational Sciences **Massey University** Palmerston North, New Zealand i.ghosh@massey.ac.nz

Sishu Shankar Muni School of Mathematical and Computational Sciences **Massey University** Palmerston North, New Zealand s.muni@massey.ac.nz ORCID: 0000-0001-9545-8345

Ibrahim Olatunji Sarumi Department of Mathematics and Statistics King Fahd University of Petroleum and Minerals Dhahran, Saudi Arabia isarumi@kfupm.edu.sa

KED KAR KED KED E YORN

Afeez Abidemi **Department of Mathematical Sciences Federal University of Technology** Akure, Nigeria aabidemi@futa.edu.ng ORCID: 0000-0003-1960-0658

Denatured Morris-Lecar model (Fatoyinbo et al., 2022)

The dentaured Morris-Lecar model proposed in the book 1 consists of two nonlinearly coupled ODEs

$$
\dot{x} = x^2(1-x) - y + l,\tag{11}
$$

$$
\dot{y} = Ae^{\alpha x} - \gamma y. \tag{12}
$$

Here x is the action potential, y is again the recovery variable and I is the external current. The other parameters are all positive constants.

¹D. Schaeffer an[d](#page-40-0) J. Ca[in](#page-40-0), *Ordinary differential equations: Basics and be[yon](#page-38-0)d* [\(S](#page-37-0)[p](#page-38-0)[r](#page-39-0)in[ge](#page-0-0)[r, 2](#page-42-0)[01](#page-0-0)[8\)](#page-42-0) \equiv ΩQ

New Model

$$
\dot{x} = x^2(1-x) - y + l,\t(13)
$$

$$
\dot{y} = Ae^{\alpha x} - \gamma y,\tag{14}
$$

$$
\dot{I} = \varepsilon (I'(x) - I), \tag{15}
$$

(17)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

where

$$
I'(x) = \frac{1}{60} \left[1 + \tanh\left(\frac{0.05 - x}{0.001}\right) \right]
$$
 (16)

is the smoothed-out version of the step function given by

$$
H(x) = \begin{cases} \frac{1}{30}, & x < 0.05, \\ 0, & x > 0.05. \end{cases}
$$

New Model

K ロ X x 4 → K 差 X X 差 → X 差 → の Q Q →

The End

Thank you! Questions?

