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Neurons as Dynamical units

dynamical systems like ODEs or maps

» Neurons represent the fundamental dynamical units of the nervous system
» The dynamics of neurons, like firing of action potentials, can be modeled as simple

Figure: Two neurons connected by a synapse. (Powered by DALL-E 3)



Chialvo Map (Chialvo, 1995)

The two-dimensional neuron map is given by

Xn+1 = Xge(yn_X") + k07

Yn+1 = a@Yn — bx, + c.

v

The state variables x and y represent the activation variable and recovery-like
variable,

a, b, c and kg are the system parameters,
a < 1 is the time constant of recovery,
b < 1 represents the activation dependence of the recovery process,

¢ denotes the offset, and

vVvYyyvyy

ko is the time-independent additive perturbation.



A Typical Phase Portrait
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Electromagnetic flux

We describe the effects of electromagnetic flux on the system of neurons with
memristors. The induction current due to electromagnetic flux is given by

dg(¢) _ dq(¢) d¢ do
TP TRPIZC - M(¢) "2 = kM(9)x.
dt do dar = MOy (¢)x
» ¢: electromagnetic flux across the neuron membranes,
» k: electromagnetic flux coupling strength, &
» M(¢): memconductance of electromagnetic flux controlled memristor.

We consider the following memconductance function:

M(¢) = o + 366



Improved Chialvo map under electromagnetic flux (Muni, Fatoyinbo,

&
Ghosh, 2022)
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Improved Chialvo map under electromagnetic flux (Muni, Fatoyinbo, &
Ghosh, 2022)

Under the action of electromagnetic flux, the system of Chialvo map is improved to the
following map:

Xp+1 = X,%e(y"_x") + ko + kxnM(p),

Yn+1 = a¥yn — bxp + ¢,

Gnt1 = kixn — kan,

making the system a three-dimensional smooth map. The new variables «, 3, k1, ko
represent the electromagnetic flux parameters.



Multistability
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Bifurcation structures and antimonotonicity

® Zoomed version of region A

Figure: Bifurcation diagram of x with respect to k in panel (a). A maximal Lyapunov exponent
diagram is shown in panel (b).



Bifurcation structures and antimonotonicity
(a)

Figure: In (a) a stable fixed point is shown in the x — y — ¢ phase space for a = 0.838. After a
supercritical Neimark-Sacker bifurcation, an attracting closed invariant curve is born as shown
in (b) at a = 0.841. A chaotic attractor is then formed when a is increased to 0.88.



Numerical bifurcation analysis

Table: Abbreviations of codimension-1 and codimension-2 bifurcations

Codimension-1

Saddle-node (fold) bifur- | LP Neimerk-Sacker bifurca- | NS

cation tion
Period-doubling (flip) bi- | PD
furcation

Codimension-2
Cusp CP Chenciner CH
Generalized flip GPD || Fold-Flip LPPD
Flip-Neimark-Sacker PDNS|| Fold-Neimark-Sacker LPNS
1:1 resonance R1 1:2 resonance R2

1:3 resonance R3 1:4 resonance R4




Numerical bifurcation analysis

Figure: (a) Codimension-1 bifurcation diagram with k as bifurcation parameter. (b)
Codimesion-2 bifurcation diagram in (k, c)-parameter plane. (c) Zoomed version of (b)




Bursting and spiking features
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Ring-star network for multiple neurons

Figure: (a) Ensemble of connected neurons. (Powered by DALL-E 3). (b) Ring-star network of
Chialvo neuron system.



Ring-star network for multiple neurons

» The mathematical model for the ring-star connected Chialvo neuron map under
electromagnetic flux is defined as:

in(n -+ 1) = xn(n)2e" ) kg - oYM (61n()
m+R
+ 1lm(n) = xa(m) + 55 D7 (xi(n) = xm(m)),

i=m—R
V(14 1) = aim(n) — () + .
¢m(n + 1) = klxm(n) - k2¢m(n)>



Ring-star network for multiple neurons

» The central node is further defined as

1) = Petr (=) L o 4 koq (m)M(51(m))

+NZXI _Xl

yi(n+1) = 3)/1( ) — bxa(n) +c,
$1(n+ 1) = kixa(n) — kag1(n),

having the following boundary conditions:

Xm+n(n) = Xm(n)
Ym+n(n) = ym(n),
¢m+N(n) = ¢m(n)'



Simulations

(b) Chimera state

(©) Synchronized state
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Simulations

(b) Transition to two-clustered state

() Two-clustered state
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(d) Three-clustered state
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Heterogeneous coupling strengths (Ghosh, Muni, & Fatoyinbo, 2023)
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Heterogeneous coupling strengths (Ghosh, Muni, & Fatoyinbo, 2023)

o
/
¢ ; o
Figure: The star and ring coupling strengths are denoted by u,, and o, for each node
m=1,..., N respectively. Different colors in the ring-star topology signify a range of

heterogeneous values of i, and op,.



Heterogeneous coupling strengths (Ghosh, Muni, & Fatoyinbo, 2023)

» We introduce heterogeneities to the coupling strengths o,,(n) and pm(n) both in
space and time.

> In space, the heterogeneities are realized following the application of a noise source
with a uniform distribution given by

Um(n) =00+ D, (;-n7H7 (2)
m(n) = po + Du&", 3)

» Here o and po are the mean values of the coupling strengths i, and o,
respectively.

» We keep g € [-0.01,0.01] and po € [—0.001,0.001].

» The noise sources &, and &, for the corresponding coupling strengths are real
numbers randomly sampled from the uniform distribution [—0.001, 0.001].

» Finally, the D's refer to the “noise intensity” which we restrict in the range [0,0.1].



Heterogeneous coupling strengths (Ghosh, Muni, & Fatoyinbo, 2023)

» Heterogeneity in time is introduced by considering the network having time-varying
links depending on the two coupling probabilities P, and P, which govern the
update of the coupling topology with each iteration n.

» The probability with which the central node is connected to all the peripheral
nodes at a particular n is denoted by P,,.

> Likewise, the probability with which the peripheral nodes are connected to their R
neighboring nodes is given by P,.

» We employ three metrics to analyse our model: (1) cross-correlation coefficient,
(2) synchronization error, and (3) Sample entropy



Quantitative metrics

» The general definition of the cross-coefficient denoted by I 1, is given by

M = — il (@)
VAGi(m)2)((Zm(n))?)
» The averaged cross-correlation coefficient over all the units of the network is given
by,
1 N
m=1,m#i

» We use Iy, denoting the degree of correlation between the first peripheral node
of the ring-star network and all the other nodes, including the central node.

» The average is calculated over time with transient dynamics removed and

%(n) = x(n) - (x(n)).



Quantitative metrics

» The averaged synchronization-error for the nodes in a system is given by

Z (Ixa(n) = xm(n)[),

» We again consider node number N = 2 as the baseline.

(6)



Simulations
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Figure: Coherent and solitary nodes giving rise to a two-clustered state.



simulations
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Figure: Mostly synced in the coherent domain with two solitary nodes.



Simulations
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Figure: An almost definitive bifurcation boundary is observed. Solitary nodes appear around
oo ~ 0 and o > 0.



Simulations
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Figure: Comparison plots for the various measures. Figures (a) and (c) show an inverse trend
whereas figure (b) shows a proportional trend.



A bit of a digression! (Ghosh, Nair, Fatoyinbo, & Muni, 2024)
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A bit of a digression! (Ghosh, Nair, Fatoyinbo, & Muni, 2024)

Figure: A heterogeneous network of a tri-oscillator chain composed of end nodes (Chialvo
neuron map) and central node (Rulkov neuron map).



Higher-order smallest ring-star network (Nair, Ghosh, Fatoyinbo, & Muni,
2024)

On the higher-order smallest ring-star network of
Chialvo neurons under diffusive couplings

Cite as: Chaos 34, 073135 (2024); doi: 10.1063/5.0217017 T
Submitted: 2 May 2024 - Accepted: 3 July 2024 - @ u @
Published Online: 18 July 2024

Anjana S. Nair," Indranil Ghosh,”? (2 Hammed O. Fatoyinbo,” '/ and Sishu S. Muni’

AFFILIATIONS

School of Digital Sciences, Digital University Kerala, Technopark Phase-IV campus, Mangalapuram 695317, Kerala, India
2school of Mathematical and Computational Sciences, Massey University, Colomnbo Road, Palmerston North 4410, New Zealand
*Department of Mathematical Sciences, School of Engineering, Computer and Mathematical Sciences, Auckland University of
Technology, Auckland 1142, New Zealand

#)Author to whom correspondence should be addressed: osh@massey.ac.nz



Higher-order smallest ring-star network (Nair, Ghosh, Fatoyinbo, & Muni,
2024)
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Figure: In panel (a) the coupling strength within the star configuration is denoted by 1, while
the coupling strength within the ring is denoted by o(1). Moreover, the coupling strength
originated from the higher-order interactions is represented by (2, as indicated by the triplets

in panels (b)—(e).



Model

This system in compact form is written as
31+ 1) = xp(m)2e? (D=5 4 ko 1 pu(xa () — xp())

4
003 (sl) = o)

+ 0 Z Z xi(n) + x;(n) — 2x,(n)),
i=1 j=i+1
i#p
i#p
yp(n+1) = ayp(n) — bxp(n) + ¢,

(7)



Model

and

4
xi(n+ 1) = xy(n)?e0r(M=xalm) 4y 4 #Z(Xi(”) —x1(n))

+ 03 Z Z (xi(n) + x;(n) — 2x1(n)),
i=2 j=i+1



Simulations
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Figure: Bifurcation plot of each node against the coupling strength ¢(®) once simulated forward
(points colored black) and once backward (points colored red).



Simulations

(c) 0@ =0.11 (d) 0@ =0.115

Figure: Typical phase portraits. (a) fixed point, (b) period-doubling, (c) a disjoint cyclic
quasiperiodic closed invariant curve, (d) chaos.



0 — 1 test

3

(a) ¢®® =0.08 (b) o(® =0.09

(c) o =0.11

Figure: Signal plots. (a) highly bounded trajectory, (b) slightly less bounded trajectory, (c)
between bounded and diffusive, and (d) diffusive random walk corresponding to a Brownian
motion with zero drift.



Metrics
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Figure: A bifurcation plot of the first node with (2 as the main bifurcation parameter. The
corresponding value of K from the chaos test and SE for complexity are shown.



Denatured Morris-Lecar model (Fatoyinbo et al., 2022)
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Denatured Morris-Lecar model (Fatoyinbo et al., 2022)

The dentaured Morris-Lecar model proposed in the book!consists of two nonlinearly
coupled ODEs

x=x(1—x)—y+1, (11)
y =Ae —qy. (12)

Here x is the action potential, y is again the recovery variable and / is the external
current. The other parameters are all positive constants.

'D. Schaeffer and J. Cain, Ordinary differential equations: Basics and beyond (Springer, 2018)



New Model

x=x*(1=x)—y+1,
)-/:Aeax_,yy7
I =e(l'(x)—1),
where
1 0.05 — x
I'(x) = — |1+ tanh
() 60[ tan < 0.001

is the smoothed-out version of the step function given by

1
H(x) = 350 X < 0.05,
0, x> 0.05.

)

—
[y
S



New Model
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The End

Thank you! Questions?



