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Neurons as Dynamical units

▶ Neurons represent the fundamental dynamical units of the nervous system
▶ The dynamics of neurons, like firing of action potentials, can be modeled as simple

dynamical systems like ODEs or maps

Figure: Two neurons connected by a synapse. (Powered by DALL-E 3)



Chialvo Map (Chialvo, 1995)

The two-dimensional neuron map is given by

xn+1 = x2
ne

(yn−xn) + k0,

yn+1 = ayn − bxn + c .

▶ The state variables x and y represent the activation variable and recovery-like
variable,

▶ a, b, c and k0 are the system parameters,
▶ a < 1 is the time constant of recovery,
▶ b < 1 represents the activation dependence of the recovery process,
▶ c denotes the offset, and
▶ k0 is the time-independent additive perturbation.



A Typical Phase Portrait



Electromagnetic flux

We describe the effects of electromagnetic flux on the system of neurons with
memristors. The induction current due to electromagnetic flux is given by

dq(ϕ)

dt
=

dq(ϕ)

dϕ

dϕ

dt
= M(ϕ)

dϕ

dt
= kM(ϕ)x .

▶ ϕ: electromagnetic flux across the neuron membranes,
▶ k : electromagnetic flux coupling strength, &
▶ M(ϕ): memconductance of electromagnetic flux controlled memristor.

We consider the following memconductance function:

M(ϕ) = α+ 3βϕ2.



Improved Chialvo map under electromagnetic flux (Muni, Fatoyinbo, &
Ghosh, 2022)



Improved Chialvo map under electromagnetic flux (Muni, Fatoyinbo, &
Ghosh, 2022)

Under the action of electromagnetic flux, the system of Chialvo map is improved to the
following map:

xn+1 = x2
ne

(yn−xn) + k0 + kxnM(ϕn),

yn+1 = ayn − bxn + c ,

ϕn+1 = k1xn − k2ϕn,

making the system a three-dimensional smooth map. The new variables α, β, k1, k2
represent the electromagnetic flux parameters.



Multistability
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Bifurcation structures and antimonotonicity
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Figure: Bifurcation diagram of x with respect to k in panel (a). A maximal Lyapunov exponent
diagram is shown in panel (b).



Bifurcation structures and antimonotonicity
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Figure: In (a) a stable fixed point is shown in the x − y − ϕ phase space for a = 0.838. After a
supercritical Neimark-Sacker bifurcation, an attracting closed invariant curve is born as shown
in (b) at a = 0.841. A chaotic attractor is then formed when a is increased to 0.88.



Numerical bifurcation analysis

Table: Abbreviations of codimension-1 and codimension-2 bifurcations

Codimension-1
Saddle-node (fold) bifur-
cation

LP Neimerk-Sacker bifurca-
tion

NS

Period-doubling (flip) bi-
furcation

PD

Codimension-2
Cusp CP Chenciner CH
Generalized flip GPD Fold-Flip LPPD
Flip-Neimark-Sacker PDNS Fold-Neimark-Sacker LPNS
1:1 resonance R1 1:2 resonance R2
1:3 resonance R3 1:4 resonance R4



Numerical bifurcation analysis
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Figure: (a) Codimension-1 bifurcation diagram with k as bifurcation parameter. (b)
Codimesion-2 bifurcation diagram in (k , c)-parameter plane. (c) Zoomed version of (b)



Bursting and spiking features
Tonic spiking
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Ring-star network for multiple neurons
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Figure: (a) Ensemble of connected neurons. (Powered by DALL-E 3). (b) Ring-star network of
Chialvo neuron system.



Ring-star network for multiple neurons

▶ The mathematical model for the ring-star connected Chialvo neuron map under
electromagnetic flux is defined as:

xm(n + 1) = xm(n)
2eym(n)−xm(n) + k0 + kxm(n)M(ϕm(n))

+ µ(xm(n)− x1(n)) +
σ

2R

m+R∑
i=m−R

(xi (n)− xm(n)),

ym(n + 1) = aym(n)− bxm(n) + c,

ϕm(n + 1) = k1xm(n)− k2ϕm(n),



Ring-star network for multiple neurons

▶ The central node is further defined as

x1(n + 1) = x1(n)
2e(y1(n)−x1(n)) + k0 + kx1(n)M(ϕ1(n))

+ µ

N∑
i=1

(xi (n)− x1(n)),

y1(n + 1) = ay1(n)− bx1(n) + c ,

ϕ1(n + 1) = k1x1(n)− k2ϕ1(n),

having the following boundary conditions:

xm+N(n) = xm(n), (1)
ym+N(n) = ym(n),

ϕm+N(n) = ϕm(n).



Simulations

(a) Unsynchronized state

(b) Chimera state

(c) Synchronized state
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Simulations

(a) Unsynchronized state

(b) Transition to two-clustered state

(c) Two-clustered state

(d) Three-clustered state
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Heterogeneous coupling strengths (Ghosh, Muni, & Fatoyinbo, 2023)



Heterogeneous coupling strengths (Ghosh, Muni, & Fatoyinbo, 2023)

Figure: The star and ring coupling strengths are denoted by µm and σm for each node
m = 1, . . . ,N respectively. Different colors in the ring-star topology signify a range of
heterogeneous values of µm and σm.



Heterogeneous coupling strengths (Ghosh, Muni, & Fatoyinbo, 2023)

▶ We introduce heterogeneities to the coupling strengths σm(n) and µm(n) both in
space and time.

▶ In space, the heterogeneities are realized following the application of a noise source
with a uniform distribution given by

σm(n) = σ0 + Dσξ
m,n
σ , (2)

µm(n) = µ0 + Dµξ
m,n
µ , (3)

▶ Here σ0 and µ0 are the mean values of the coupling strengths µm and σm
respectively.

▶ We keep σ0 ∈ [−0.01, 0.01] and µ0 ∈ [−0.001, 0.001].
▶ The noise sources ξσ and ξµ for the corresponding coupling strengths are real

numbers randomly sampled from the uniform distribution [−0.001, 0.001].
▶ Finally, the D’s refer to the “noise intensity” which we restrict in the range [0, 0.1].



Heterogeneous coupling strengths (Ghosh, Muni, & Fatoyinbo, 2023)

▶ Heterogeneity in time is introduced by considering the network having time-varying
links depending on the two coupling probabilities Pµ and Pσ, which govern the
update of the coupling topology with each iteration n.

▶ The probability with which the central node is connected to all the peripheral
nodes at a particular n is denoted by Pµ.

▶ Likewise, the probability with which the peripheral nodes are connected to their R
neighboring nodes is given by Pσ.

▶ We employ three metrics to analyse our model: (1) cross-correlation coefficient,
(2) synchronization error, and (3) Sample entropy



Quantitative metrics

▶ The general definition of the cross-coefficient denoted by Γi,m is given by

Γi,m =
⟨x̃i (n)x̃m(n)⟩√

⟨(x̃i (n))2⟩⟨(x̃m(n))2⟩
. (4)

▶ The averaged cross-correlation coefficient over all the units of the network is given
by,

Γ =
1

N − 1

N∑
m=1,m ̸=i

Γi,m. (5)

▶ We use Γ2,m, denoting the degree of correlation between the first peripheral node
of the ring-star network and all the other nodes, including the central node.

▶ The average is calculated over time with transient dynamics removed and
x̃(n) = x(n)− ⟨x(n)⟩.



Quantitative metrics

▶ The averaged synchronization-error for the nodes in a system is given by

E =
1

N − 1

N∑
m=1,m ̸=2

⟨|x2(n)− xm(n)|⟩, (6)

▶ We again consider node number N = 2 as the baseline.



Simulations

Figure: Coherent and solitary nodes giving rise to a two-clustered state.



simulations

Figure: Mostly synced in the coherent domain with two solitary nodes.



Simulations
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Figure: An almost definitive bifurcation boundary is observed. Solitary nodes appear around
σ0 ∼ 0 and µ0 > 0.



Simulations
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Figure: Comparison plots for the various measures. Figures (a) and (c) show an inverse trend
whereas figure (b) shows a proportional trend.



A bit of a digression! (Ghosh, Nair, Fatoyinbo, & Muni, 2024)



A bit of a digression! (Ghosh, Nair, Fatoyinbo, & Muni, 2024)

ChialvoChialvo Rulkov

Figure: A heterogeneous network of a tri-oscillator chain composed of end nodes (Chialvo
neuron map) and central node (Rulkov neuron map).



Higher-order smallest ring-star network (Nair, Ghosh, Fatoyinbo, & Muni,
2024)



Higher-order smallest ring-star network (Nair, Ghosh, Fatoyinbo, & Muni,
2024)
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Figure: In panel (a) the coupling strength within the star configuration is denoted by µ, while
the coupling strength within the ring is denoted by σ(1). Moreover, the coupling strength
originated from the higher-order interactions is represented by σ(2), as indicated by the triplets
in panels (b)→(e).



Model

This system in compact form is written as

xp(n + 1) = xp(n)
2e(yp(n)−xp(n)) + k0 + µ(x1(n)− xp(n))

+ σ(1)
4∑

i=2

(xi (n)− xp(n))

+ σ(2)
4∑

i=1

4∑
j=i+1
i ̸=p
j ̸=p

(xi (n) + xj(n)− 2xp(n)), (7)

yp(n + 1) = ayp(n)− bxp(n) + c , (8)



Model

and

x1(n + 1) = x1(n)
2e(y1(n)−x1(n)) + k0 + µ

4∑
i=2

(xi (n)− x1(n))

+ σ(2)
4∑

i=2

4∑
j=i+1

(xi (n) + xj(n)− 2x1(n)), (9)

y1(n + 1) = ay1(n)− bx1(n) + c . (10)



Simulations

0.08 0.09 0.10 0.11

2

4

x1

0.08 0.09 0.10 0.11

2

3

x2

0.08 0.09 0.10 0.11

2

3
x3

0.08 0.09 0.10 0.11
σ(2)

2

3

x4

Figure: Bifurcation plot of each node against the coupling strength σ(2) once simulated forward
(points colored black) and once backward (points colored red).



Simulations
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0 − 1 test
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Figure: Signal plots. (a) highly bounded trajectory, (b) slightly less bounded trajectory, (c)
between bounded and diffusive, and (d) diffusive random walk corresponding to a Brownian
motion with zero drift.



Metrics
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Figure: A bifurcation plot of the first node with σ(2) as the main bifurcation parameter. The
corresponding value of K from the chaos test and SE for complexity are shown.



Denatured Morris-Lecar model (Fatoyinbo et al., 2022)



Denatured Morris-Lecar model (Fatoyinbo et al., 2022)

The dentaured Morris-Lecar model proposed in the book1consists of two nonlinearly
coupled ODEs

ẋ = x2(1 − x)− y + I , (11)
ẏ = Aeαx − γy . (12)

Here x is the action potential, y is again the recovery variable and I is the external
current. The other parameters are all positive constants.

1D. Schaeffer and J. Cain, Ordinary differential equations: Basics and beyond (Springer, 2018)



New Model

ẋ = x2(1 − x)− y + I , (13)
ẏ = Aeαx − γy , (14)

İ = ε(I ′(x)− I ), (15)

where

I ′(x) =
1
60

[
1 + tanh

(
0.05 − x

0.001

)]
(16)

is the smoothed-out version of the step function given by

H(x) =

{
1
30 , x < 0.05,
0, x > 0.05.

(17)



New Model
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The End

Thank you! Questions?


