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Abstract
This project is based on the dynamic simulations of various Chaos Game

algorithms to produce fractal patterns, with the help of Pygame. Patterns to
be discussed are Sierpinskis Triangle, Barnsleys fern and few restricted chaos
game fractals. The Chaos game makes use of a random process to produce
visualizations of self-similar fractal patterns on a plane. In this project some
of the few fractal patterns, each with a description , its own chaos game rule
and Pygame codes, to simulate its development are listed. Now, Pygame is a
cross-platform set of python modules to create interactive video-games. These
Pygame simulators make the visualizations of the pattern-generation grow
with time, and very beautiful to look at. I also discuss some of the norms
to be followed while using Pygame and its applications in scientific program-
ming.

Introduction
The algorithm of Chaos Game was first developed by the british math-
ematician, Michael Barnsley around the year 1988, which produced
some interesting fractal patterns. Generally, it refers to the method
of generating the fixed point (attractor) of an iterated function sys-
tem(IFS). Using the algorithm, the pattern is produced by iteratively
creating a sequence of points, starting with an initial random point
anywhere on the drawing platform. In the sequence, each point is the
fraction of the distance between the previous point and a randomly
chosen vertex (by rolling a dice, if human or by using a pseudo-
random generator, if a computer!) of the n-gon.

• Although the algorithm is quite simple, the patterns formed, after
continuous iterations, always exhibit infinite complexity and self
similarity. Zooming a particular section of the fractal, results in the
same pattern but with less density of points.

• When the simulations are carried out, the fractal patterns grow and
become clearer with time, with each iterations. If the n-gon is reg-
ular, the pattern formed is symmetric.

Sierpinski’s Triangle
Coined by the Polish mathematician Waclaw Sierpinski, this trian-
gle needs 3 random vertces and a random starting point to start with
the simulation. The distance factor r is 1

2. Let A, B and C be the 3
random vertices of a triangle and St be the starting point, also chosen
randomly on the drawing platform. Playing with rolling a dice, we
come up with any random integer in the range [1, 6] with an equal
probability 1

6. We design the game in such a way that, if we come up
with a face 1 or 2, we move towards point A from the previous point
and plot a new point halfway between. SImilarly for faces 3 or 4 or
5 or 6, we move halfway towards B or C respectively. The process
continued for a large number of iterations results in Figure 1.

Figure 1: Simulation of Sierpinski’s Triangle

Code snippet

import random, pygame, sys
from pygame.locals import∗
#set up the window
DISPLAYSURF=pygame.display.set mode((800, 800))
#set up the colors
BLACK=(0, 0, 0)
BLUE=(0, 0, 255)
i=0
while True:

for event in pygame.event.get():
if event.type==QUIT:

pygame.image.save(DISPLAYSURF, ”Sierpinski.png”)
pygame.quit()
sys.exit()

elif event.type==MOUSEBUTTONUP:
i+=1
if i==1:

A=(event.pos[0], event.pos[1])
pygame.draw.circle(DISPLAYSURF,BLUE,A,0,0)

elif i==2:
B=(event.pos[0], event.pos[1])
pygame.draw.circle(DISPLAYSURF,BLUE,B,0,0)

elif i==3:
C=(event.pos[0], event.pos[1])
pygame.draw.circle(DISPLAYSURF,BLUE,C,0,0)

elif i==4:
St=(event.pos[0], event.pos[1])

pygame.draw.circle(DISPLAYSURF,BLUE,St,0,0)
else:

pygame.quit()
sys.exit()

if i==4:
x=random.randint(1, 6)
if x in [1, 2]: St=((St[0]+A[0])//2, (St[1]+A[1])//2)
elif x in [3, 4]: St=((St[0]+B[0])//2, (St[1]+B[1])//2)
else: St=((St[0]+C[0])//2, (St[1]+C[1])//2)
pygame.draw.circle(DISPLAYSURF, BLUE, St, 0, 0)

pygame.display.update()

• The Hausdorff Dimension of Sierpinski’s Triangle is 1.5849.

number of vertices=5, r=1
2

Figure 2: A restricted Pentagon

number of vertices=6, r=1
3

Figure 3: A Hexagon

• The Hausdorff Dimension of this pattern is 1.6309.

Barnsley’s fern
• Devised by Michael Barnsley, the computer code that simulates this

pattern is also an example of IFS (iterated Function System).
• The algorithm developed by Barnsley also follows from the collage

theorem.
• To construct the leaf, we need these four affine transformations:

f1(x, y) =

[
0.00 0.00
0.00 0.16

] [
x
y

]
(1)

f2(x, y) =

[
0.85 0.04
−0.04 0.85

] [
x
y

]
+

[
0.00
1.60

]
(2)

f3(x, y) =

[
0.20 −0.26
0.23 0.22

] [
x
y

]
+

[
0.00
1.60

]
(3)

f4(x, y) =

[
−0.15 0.28
0.26 0.24

] [
x
y

]
+

[
0.00
0.44

]
(4)

• In simulating the growth, the first point is drawn at the origin
(X0 = 0, Y0 = 0) and the successive points are iteratively plotted
by randomly choosing one of the above four transformations.

• f1 transformation is chosen 1% of the times and maps the base of the
stem of the leaf, f2 is chosen 85% of the times and maps the smaller
leaflets, f3 and f4 are each chosen 7% of the times and maps the
largest left-handed and the largest right-handed leaflet respectively.

Figure 4: Barnsley’s Fern, type: Black Spleenwort

Code Snippet

GREEN=(0, 255, 0)

X=[0.0]
Y=[0.0]
i=0

while True:
r=random.random()
if r<=0.02:

X+=[0.0, ]
Y+=[0.16∗Y[i], ]

elif r<=0.86:
X+=[0.85∗X[i] + 0.04∗Y[i], ]
Y+=[−0.024∗X[i] + 0.85∗Y[i] + 1.6, ]

elif r<=0.93:
X+=[0.20∗X[i] − 0.26∗Y[i], ]
Y+=[0.23∗X[i] + 0.22∗Y[i] + 1.6, ]

else:
X+=[−0.15∗X[i] + 0.28∗Y[i], ]
Y+=[0.26∗X[i] + 0.24∗Y[i] + 0.44, ]

pygame.draw.circle(DISPLAYSURF, GREEN,
(int(X[i]∗90 + 300), 600 − int(Y[i]∗50)), 0, 0)

i+=1

Yet Another Fern

Figure 5: Barnsley’s Fern, type: Thelypteridaceae

Conclusions

• In our code, we need to keep in mind that the top left corner is coor-
dinated (0, 0) in a pygame drawing surface and the value of Y-axis
increases downwards.

• Pygame does not allow floating point values. So, to get a convinient
simulation, we need to map the pygame coordinates to a new coor-
dinate system that suits our needs.

• The dynamic simulations of fractals have turned out to be useful in
scientific applications ranging from computer graphics, image com-
pression, mathematical modeling, in video game industries, etc.
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