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> A simplified variant of the Morris-Lecar neuron was introduced in their book by

Schaeffer and Cain, which has been dubbed as the denatured Morris-Lecar (dML)
model.

David G. Schaeffer
JohnW. Cain

Ordinary
Differential
Equations:

Basics and Beyond

Figure: Book by Schaeffer and Cain?.

!D. Schaeffer and J. Cain, “Ordinary differential equations: Basics and beyond". (Springer, 2018).
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» The model equations are
i=a*1—-z)—y+1,
y = Ae™ — yy.
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corresponding recovery variable.

» The nonlinear term in 2 demonstrates positive feedback to neurons corresponding
to self-reinforcement, leading to neuron firing.
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» The model equations are
i=a*1—-z)—y+1,
Uy = Ae™® — vy.
» Here, z is the voltage-like variable with a cubic nonlinearity, and y represents the
corresponding recovery variable.

» The nonlinear term in 2 demonstrates positive feedback to neurons corresponding
to self-reinforcement, leading to neuron firing.

» The exponential term in y models a negative feedback, corresponding to the
dynamics of the refractory period.
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» External stimulus current I leads to neuron depolarization, leading to triggering an
action potential.
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action potential.

» Other parameters A, «, and ~ are all positive constants.

> Parameter v is the excitability and together with A determines the kinetics of 3.
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» External stimulus current I leads to neuron depolarization, leading to triggering an
action potential.

» Other parameters A, «, and ~ are all positive constants.
> Parameter v is the excitability and together with A determines the kinetics of 3.

> Whereas « is a control parameter influencing the exponential growth rate of v.
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y= Az —y.
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» The dML model is closely comparable to a FitzHugh-Nagumo type neuron model
which can be written as
t=x*(1—z)—y+1,
Y= Ax —yy.
» Both models have the same z-nullclines with differing y-nullclines. The y-nullclines
curve upward pertaining to the exponential growth term Ae®*, whereas for FHN
the y-nullclines are straight lines pertaining to the linear term Ax.

0.4 0.4
fy-nulcline

z-nullcling 02 z-nullclin

0.0 Fratenne

(a) dML (b) FHN

Figure: For parameter values A = 0.0041, o = 5.276, v = 0.315, and I = 0.012347.
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» The equilibrium can be computed from the transcendental equations?

2?(1—z)—y+1=0,
Aea177y207

by solving for x.

2|, Ghosh, H.O. Fatoyinbo. “I. Ghosh, H.O. Fatoyinbo. “Fractional order induced bifurcations in
Caputo-type denatured Morris-Lecar neurons.” in Commun. Nonlinear Sci. Numer. Simul. (2025):
108984.
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» The equilibrium can be computed from the transcendental equations?

2?(1—x)—y+1=0,
Ae™ — vy =0,

by solving for x.
> We can define:
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2|, Ghosh, H.O. Fatoyinbo. “I. Ghosh, H.O. Fatoyinbo. “Fractional order induced bifurcations in
Caputo-type denatured Morris-Lecar neurons.” in Commun. Nonlinear Sci. Numer. Simul. (2025):

108984.
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Figure: (a) SNLC: Saddle Node Limit Cycle, (b) Iutan: @ mutual annihilation bifurcation
occurs at I = I hytan. See D. Schaeffer and J. Cain,(Springer, 2018).
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Figure: A codimension-two bifurcation diagram of the dML model in the(I,~)-plane3.

3H.0. Fatoyinbo, et al. “Numerical bifurcation analysis of improved denatured morris-lecar neuron
model”. In 2022 international conference on decision aid sciences and applications (DASA) (pp.
55-60). IEEE (2022).
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» The slow-fast version of the dML also introduced by Schaeffer and Cain is given by
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Y= Ae™ —y,
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» The slow-fast version of the dML also introduced by Schaeffer and Cain is given by

bt=ax*1—-z)—y+1,
Y= Ae™ —y,
[=e(I'(z) - 1),

» where

1 0.05—
I'(z) = — |1+ tanh [ 2%
(@) 60[ +tan ( 0.001 >]

is the smoothed-out version of a step function.
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» The slow-fast version of the dML also introduced by Schaeffer and Cain is given by

t=2*(1—z)—y+1,
y=Ae™ =y,
P=e(I'@) - 1),

» where

1 0.05—
I'(z) = — |1+ tanh [ 2%
(@) 60[ +tan ( 0.001 >]

is the smoothed-out version of a step function.

» the parameter € is a small perturbation parameter that separates the time scales
and is sometimes referred to as the time-scale parameter.
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(b) Phase portrait

Figure: We observe a periodic bursting behavior. Here A = 0.0041, a = 5.276, v = 0.315, and
e =0.001. The initial condition 2(0) is sampled uniformly from the range [—1, 1]. Furthermore

(y(0),1(0)) = (0.1,0.012347).
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> Bistability leads to bursting: vary I slowly in time.

“E. Izhikevich, “Dynamical systems in neuroscience”. (MIT press, 2007).
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> Bistability leads to bursting: vary I slowly in time.

» This kind of bursting is classified as fold/homoclinic type* where the transition
from the resting state to the spiking limit cycle occurs via a saddle-node (fold)
bifurcation and from the spiking state to the resting state via a saddle homoclinic

orbit bifurcation.

“E. Izhikevich, “Dynamical systems in neuroscience”. (MIT press, 2007).
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> Two connected neurons can be mathematically modeled using a directional
coupling strategy.

51. Ghosh, H.O. Fatoyinbo, and S.S. Muni. “Comprehensive analysis of slow-fast denatured
Morris-Lecar neurons”. Phys. Rev. E 111.4 (2025): 044204.
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> Two connected neurons can be mathematically modeled using a directional
coupling strategy.

» In our work® a gap-junction coupling replicating a bidirectional electrical synapse is
utilized. The neurons are considered identical.
0

0

51. Ghosh, H.O. Fatoyinbo, and S.S. Muni. “Comprehensive analysis of slow-fast denatured
Morris-Lecar neurons”. Phys. Rev. E 111.4 (2025): 044204.
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> Two connected neurons can be mathematically modeled using a directional
coupling strategy.

» In our work® a gap-junction coupling replicating a bidirectional electrical synapse is
utilized. The neurons are considered identical.

0

» The model equations are

i1 =231 —a1) —y1 + L+ 0(x2 — 21), 1 =A™ —yy1, I = (I'(x1) — Nh),
9 = 23(1 — ) —yo + Lo + 0(x1 — w2), G0 =A™ —yyo, I =e(I'(x2) — Ip).

51. Ghosh, H.O. Fatoyinbo, and S.S. Muni. “Comprehensive analysis of slow-fast denatured
Morris-Lecar neurons”. Phys. Rev. E 111.4 (2025): 044204.
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(c) 6 =0, e =0.0002: irregular bursting (d) 6 = 10, e = 0.0002: Decay oscillations
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Figure: Codimension-one bifurcation diagram of the coupled fast subsystem. Solid [dashed]
curves correspond to stable [unstable] solutions and red curves are limit cycles. HB, LP, and
BP represent Hopf bifurcation, saddle-node bifurcation of an equilibrium and branch point

respectively.



The 0 — 1 test for detecting chaos®
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5G. Gottwald and I. Melbourne, On the implementation of the 0-1 test for chaos, SIAM J. Appl.

Dyn. Syst. 8, 129 (2009).
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» where Z;(t) = x;(t) — (x;(t)) is the variation of the dynamical variable x at index 4
from its mean.
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» where Z;(t) = x;(t) — (x;(t)) is the variation of the dynamical variable x at index 4
from its mean.

» The angular brackets (-) signify the mean over time.
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» where Z;(t) = x;(t) — (x;(t)) is the variation of the dynamical variable x at index 4
from its mean.

» The angular brackets (-) signify the mean over time.

» When |I'| = 1, it means both the nodes are completely synchronized with each
other.
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» The cross-correlation coefficient between node 1 and 2 given by

» where Z;(t) = x;(t) — (x;(t)) is the variation of the dynamical variable x at index 4
from its mean.

» The angular brackets (-) signify the mean over time.

» When |I'| = 1, it means both the nodes are completely synchronized with each
other.

» When I" = 1 it means both the nodes are in phase and completely synchronized,
whereas I' = —1 represents anti-phase synchrony.
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> Model as a set of Caputo-type fractional order differential equations.
Fractional-order systems incorporate memory effects.
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» The model equations are
CDﬂ:L‘—x(l x)—y+1,
CDBy — Ae®® _ Y.
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> Model as a set of Caputo-type fractional order differential equations.
Fractional-order systems incorporate memory effects.

» The model equations are
CDﬂ:L‘—x(l x)—y+1,
CDBy — Ae®® _ Y.

» Here C' stands for “Caputo” and 3 € (0, 1] is the order of the integral, also known
as the memory index.
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Theorem
Suppose

i) (2 —3z*) —~v >0, and

i) —y2*(2 — 30%) + ade®® < 2\/—y — 1*(2 — 3z%) cos(%”).
Then an equilibrium point (x*,y*) of the fractional order system is asymptotically
stable.

Theorem
Suppose I € (Iin, Imax). Then this branch of equilibrium points is completely unstable.
» From the above theorem we can directly see that §(z*) < 0 implies one of the two
eigenvalues is positive and the other negative, meaning the equilibrium point on
this branch is a saddle, irrespective of the fractional order 5 € (0, 1].

Theorem
Suppose I = Iy or I = Inax. Then the fractional order system has a saddle-node

bifurcation.
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Theorem
Suppose I < Imin or I > Lynax. Then

i) the stability of an equilibrium point of the system depends on the sign of 7(x*),
ii) for T(z*) > 0 the equilibrium is asymptotically stable if and only if the order

2 - *(2 — 3x*
B < f*=="cos! (min(l, 7+*x (2—327) >>
™ 2y/ade™™ — yz*(2 — 3a*)
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Phase portraits
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A crude bifurcation diagram

1 =0.019 > L

4 1.000
0.5 Unstable region
0 4 0.995

0.3 o 990
0.2 0.985
01 0.980 Stable region
0.90 0.92 0.94 0.96 B* 1.00 0.975
B 0016 0018 0020 002 0020 0026 0028 0.030

I

(a) B* = 0.98233 (b) Hopf bifurcation curve
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» We aim to consider a higher-order network of the neurons (more realistic)
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» Delay-induced coupling is an interesting avenue to explore.
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» We aim to consider a higher-order network of the neurons (more realistic)

» We also aim to study pattern formation in a diffusively coupled chain of neurons
» Delay-induced coupling is an interesting avenue to explore.

» An adaptive coupling strategy based on the Hebbian learning rule is justifiable.
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We aim to consider a higher-order network of the neurons (more realistic)

We also aim to study pattern formation in a diffusively coupled chain of neurons
Delay-induced coupling is an interesting avenue to explore.

An adaptive coupling strategy based on the Hebbian learning rule is justifiable.

It would be intriguing to investigate the dynamical behaviour of the coupled
neurons as a game-theoretic model.
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Thank you! Questions?



