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A denatured Morris-Lecar neuron model

▶ A simplified variant of the Morris-Lecar neuron was introduced in their book by
Schaeffer and Cain, which has been dubbed as the denatured Morris-Lecar (dML)
model.

Figure: Book by Schaeffer and Cain1.

1D. Schaeffer and J. Cain, “Ordinary differential equations: Basics and beyond”. (Springer, 2018).



A denatured Morris-Lecar neuron model

▶ The model equations are
ẋ = x2(1− x)− y + I,

ẏ = Aeαx − γy.

▶ Here, x is the voltage-like variable with a cubic nonlinearity, and y represents the
corresponding recovery variable.

▶ The nonlinear term in x demonstrates positive feedback to neurons corresponding
to self-reinforcement, leading to neuron firing.

▶ The exponential term in y models a negative feedback, corresponding to the
dynamics of the refractory period.
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A denatured Morris-Lecar neuron model

▶ External stimulus current I leads to neuron depolarization, leading to triggering an
action potential.

▶ Other parameters A, α, and γ are all positive constants.
▶ Parameter γ is the excitability and together with A determines the kinetics of y.
▶ Whereas α is a control parameter influencing the exponential growth rate of y.
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A denatured Morris-Lecar neuron model
▶ The dML model is closely comparable to a FitzHugh-Nagumo type neuron model

which can be written as
ẋ = x2(1− x)− y + I,

ẏ = Ax− γy.

▶ Both models have the same x-nullclines with differing y-nullclines. The y-nullclines
curve upward pertaining to the exponential growth term Aeαx, whereas for FHN
the y-nullclines are straight lines pertaining to the linear term Ax.
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Figure: For parameter values A = 0.0041, α = 5.276, γ = 0.315, and I = 0.012347.
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Qualitative analysis
▶ The equilibrium can be computed from the transcendental equations2

x2(1− x)− y + I = 0,

Aeαx − γy = 0,

by solving for x.

▶ We can define:

I∞(x) =
A

γ
eαx − x2(1− x).
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2I. Ghosh, H.O. Fatoyinbo. “I. Ghosh, H.O. Fatoyinbo. “Fractional order induced bifurcations in
Caputo-type denatured Morris-Lecar neurons.” in Commun. Nonlinear Sci. Numer. Simul. (2025):
108984.
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Qualitative analysis
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Numerical Bifurcation Analysis

Figure: (a) SNLC: Saddle Node Limit Cycle, (b) Imutan: a mutual annihilation bifurcation
occurs at I = Imutan. See D. Schaeffer and J. Cain,(Springer, 2018).



Numerical Bifurcation Analysis

Figure: A codimension-two bifurcation diagram of the dML model in the(I, γ)-plane3.

3H.O. Fatoyinbo, et al. “Numerical bifurcation analysis of improved denatured morris-lecar neuron
model”. In 2022 international conference on decision aid sciences and applications (DASA) (pp.
55-60). IEEE (2022).



A slow-fast variant

▶ The slow-fast version of the dML also introduced by Schaeffer and Cain is given by

ẋ = x2(1− x)− y + I,

ẏ = Aeαx − γy,

İ = ε(I ′(x)− I),

▶ where

I ′(x) =
1

60

[
1 + tanh

(
0.05− x

0.001

)]
is the smoothed-out version of a step function.

▶ the parameter ε is a small perturbation parameter that separates the time scales
and is sometimes referred to as the time-scale parameter.
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A slow-fast variant
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Figure: We observe a periodic bursting behavior. Here A = 0.0041, α = 5.276, γ = 0.315, and
ε = 0.001. The initial condition x(0) is sampled uniformly from the range [−1, 1]. Furthermore
(y(0), I(0)) = (0.1, 0.012347).



A slow-fast variant
▶ Bistability leads to bursting: vary I slowly in time.

▶ This kind of bursting is classified as fold/homoclinic type4 where the transition
from the resting state to the spiking limit cycle occurs via a saddle-node (fold)
bifurcation and from the spiking state to the resting state via a saddle homoclinic
orbit bifurcation.

4E. Izhikevich, “Dynamical systems in neuroscience”. (MIT press, 2007).
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Two-coupled dML neurons

▶ Two connected neurons can be mathematically modeled using a directional
coupling strategy.

▶ In our work5 a gap-junction coupling replicating a bidirectional electrical synapse is
utilized. The neurons are considered identical.

dML dML
θ

θ

▶ The model equations are

ẋ1 = x21(1− x1)− y1 + I1 + θ(x2 − x1), ẏ1 = Aeαx1 − γy1, İ1 = ε(I ′(x1)− I1),

ẋ2 = x22(1− x2)− y2 + I2 + θ(x1 − x2), ẏ2 = Aeαx2 − γy2, İ2 = ε(I ′(x2)− I2).

5I. Ghosh, H.O. Fatoyinbo, and S.S. Muni. “Comprehensive analysis of slow-fast denatured
Morris-Lecar neurons”. Phys. Rev. E 111.4 (2025): 044204.
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Time series & phase portraits
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Codimension-one bifurcation diagram

Figure: Codimension-one bifurcation diagram of the coupled fast subsystem. Solid [dashed]
curves correspond to stable [unstable] solutions and red curves are limit cycles. HB, LP, and
BP represent Hopf bifurcation, saddle-node bifurcation of an equilibrium and branch point
respectively.



The 0− 1 test for detecting chaos6
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6G. Gottwald and I. Melbourne, On the implementation of the 0–1 test for chaos, SIAM J. Appl.
Dyn. Syst. 8, 129 (2009).



Cross-correlation coefficient for synchronization

▶ The cross-correlation coefficient between node 1 and 2 given by

Γ =
⟨x̃1(t)x̃2(t)⟩√
⟨x̃1(t)2⟩⟨x̃2(t)2⟩

,

▶ where x̃i(t) = xi(t)− ⟨xi(t)⟩ is the variation of the dynamical variable x at index i
from its mean.

▶ The angular brackets ⟨·⟩ signify the mean over time.
▶ When |Γ| = 1, it means both the nodes are completely synchronized with each

other.
▶ When Γ = 1 it means both the nodes are in phase and completely synchronized,

whereas Γ = −1 represents anti-phase synchrony.
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Numerics

−5.0

−2.5

0.0

2.5

m
ax

(x
1,
x 2

)

0

1

2

C

−50

0

φ

0.0

0.5

1.0

K

0.00

0.25

0.50

0.75

m
ax

(λ
j)

0.0

0.2

0.4

SE

−10 0 10
θ

0

2

4

D

−10 0 10
θ

−1

0

1

Γ

−5.0

−2.5

0.0

2.5

m
ax

(x
1,
x 2

)

0

1

2

C

−50

0

φ

0.0

0.5

1.0

K

0.0

0.5

m
ax

(λ
j)

0.0

0.5

1.0

1.5

SE

−10 0 10
θ

0

2

4

D

−10 0 10
θ

−1

0

1

Γ

(a) ε = 0.001 (b) ε = 0.1



Fractional order version

▶ Model as a set of Caputo-type fractional order differential equations.
Fractional-order systems incorporate memory effects.

▶ The model equations are

CDβ
0x = x2(1− x)− y + I,

CDβ
0 y = Aeαx − γy.

▶ Here C stands for “Caputo” and β ∈ (0, 1] is the order of the integral, also known
as the memory index.
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Qualitative analysis
Theorem
Suppose

i) x∗(2− 3x∗)− γ > 0, and
ii) −γx∗(2− 3x∗) + αAeαx

∗
< 2

√
−γ − x∗(2− 3x∗) cos(βπ2 ).

Then an equilibrium point (x∗, y∗) of the fractional order system is asymptotically
stable.

Theorem
Suppose I ∈ (Imin, Imax). Then this branch of equilibrium points is completely unstable.

▶ From the above theorem we can directly see that δ(x∗) < 0 implies one of the two
eigenvalues is positive and the other negative, meaning the equilibrium point on
this branch is a saddle, irrespective of the fractional order β ∈ (0, 1].

Theorem
Suppose I = Imin or I = Imax. Then the fractional order system has a saddle-node
bifurcation.



Qualitative analysis

Theorem
Suppose I < Imin or I > Imax. Then

i) the stability of an equilibrium point of the system depends on the sign of τ(x∗),
ii) for τ(x∗) ≥ 0 the equilibrium is asymptotically stable if and only if the order

β < β∗ =
2

π
cos−1

(
min

(
1,

−γ + x∗(2− 3x∗)

2
√

αAeαx∗ − γx∗(2− 3x∗)

))
.



Phase portraits
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(a) β = 0.9 (b) β = 0.92
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(e) β = 0.98 (f) β = β∗
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A crude bifurcation diagram
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Discussion/Future work

▶ We aim to consider a higher-order network of the neurons (more realistic)

▶ We also aim to study pattern formation in a diffusively coupled chain of neurons
▶ Delay-induced coupling is an interesting avenue to explore.
▶ An adaptive coupling strategy based on the Hebbian learning rule is justifiable.
▶ It would be intriguing to investigate the dynamical behaviour of the coupled

neurons as a game-theoretic model.
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The End

Thank you! Questions?


