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Border-collision normal form

Piecewise-linear maps arise when modeling systems with switches, thresholds and
other abrupt events.
In our project, we study the two-dimensional border-collision normal form [H.E.
Nusse and J.A. Yorke, 1992], given by

fξ(x , y) =



[
τL 1
−δL 0

][
x

y

]
+

[
1
0

]
, x ≤ 0,[

τR 1
−δR 0

][
x

y

]
+

[
1
0

]
, x ≥ 0.

Here (x , y) ∈ R2, and ξ = (τL, δL, τR , δR) ∈ R4 are the parameters.
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Banerjee-Yorke-Grebogi region in parameter space
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Figure: Sketch of the parameter region ΦBYG ⊂ R4 [S. Banerjee, J.A. Yorke, and C. Grebogi.
Robust chaos. Phys. Rev. Lett., 80(14):3049– 3052, 1998.], with δL = δR = 0.01.
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Phase portrait of a chaotic attractor
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Figure: A sketch of the phase portrait of fξ with ξ ∈ ΦBYG.
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Renormalisation operator I

Renormalisation involves showing that, for some member of a family of maps, a
higher iterate or induced map is conjugate to different member of this family of
maps.

Although the second iterate f 2
ξ has four pieces, relevant dynamics arise in only two

of these. We have

f 2
ξ (x , y) =



[
τLτR − δL τR

−δRτL −δR

][
x

y

]
+

[
τR + 1
−δR

]
, x ≤ 0,[

τ2
R − δR τR

−δRτR −δR

][
x

y

]
+

[
τR + 1
−δR

]
, x ≥ 0.
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Renormalisation operator II
Now f 2

ξ can be transformed to fg(ξ), where g is the renormalisation operator [I.
Ghosh, and D.J.W. Simpson, 2022 ] g : R4 → R4, given by

τ̃L = τ2
R − 2δR ,

δ̃L = δ2
R ,

τ̃R = τLτR − δL − δR ,

δ̃R = δLδR .

We perform a coordinate change to put f 2
ξ in the normal form :

[
x̃ ′

ỹ ′

]
=



[
τ̃L 1
−δ̃L 0

][
x̃

ỹ

]
+

[
1
0

]
, x̃ ≤ 0,[

τ̃R 1
−δ̃R 0

][
x̃

ỹ

]
+

[
1
0

]
, x̃ ≥ 0.
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Results I

We consider the parameter region

Φ =
{
ξ ∈ R4∣∣τL > δL + 1, δL > 0, τR < −(δR + 1), δR > 0

}
.

The stable and the unstable manifolds of the fixed point Y intersect if and only if
ϕ(ξ) ≤ 0.

Banerjee, Yorke and Grebogi observed that an attractor is often destroyed at
ϕ(ξ) = 0 which is a homoclinic bifurcation, and thus focused their attention on the
region

ΦBYG = {ξ ∈ Φ|ϕ(ξ) > 0} .
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Results II
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Figure: The sketch of two dimensional cross-section of Rn when δL = δR = 0.01.
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Results III

Theorem

The Rn are non-empty, mutually disjoint, and converge to the fixed point (1, 0,−1, 0)
as n → ∞. Moreover,

ΦBYG ⊂
∞⋃
n=0

Rn.

Let,
Λ(ξ) = cl(W u(X )).

Theorem

For the map fξ with any ξ ∈ R0, Λ(ξ) is bounded, connected, and invariant. Moreover,
Λ(ξ) is chaotic (positive Lyapunov exponent).
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Results IV

Theorem

For any ξ ∈ Rn where n ≥ 0, gn(ξ) ∈ R0 and there exist mutually disjoint sets
S0, S1, . . . ,S2n−1 ⊂ R2 such that fξ(Si ) = S(i+1) mod 2n and

f 2n
ξ |Si is affinely conjugate to fgn(ξ)|Λ(gn(ξ))

for each i ∈ {0, 1, . . . , 2n − 1}. Moreover,

2n−1⋃
i=0

Si = cl(W u(γn)),

where γn is a saddle-type periodic solution of our map fξ having the symbolic itinerary
Fn(R) given by Table 1.
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Results V

n Fn(W)

0 R

1 LR

2 RRLR

3 LRLRRRLR

4 RRLRRRLRLRLRRRLR

Table: The first 5 words in the sequence generated by repeatedly applying the substitution
rule (L,R) 7→ (RR, LR) to W = R.
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Results VI
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Generalised parameter region I

Now we consider the more generalised parameter region considering the
orientation-reversing and non-invertible cases,

Φ =
{
ξ ∈ R4 | τL > |δL + 1|, τR < |δR + 1|

}
,

where we define

Φtrap = {ξ ∈ Φ| ϕi (ξ) > 0, i = 1, . . . , 5} ,

and

Φcone = {ξ ∈ Φ|θi (ξ) ≥ 0, i = 1, . . . , 3} .
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Typical phase portraits I
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Figure: Typical phase portraits of the chaotic attractor for the invertible case (δLδR > 0).
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Typical phase portraits II
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Figure: Typical phase portraits of the chaotic attractor for the non-invertible case (δLδR < 0).
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Invariant expanding cones I

Chaos in ΦBYG can be proved by constructing an invariant expanding cone in tangent
space. We have extended this to Φ.

C

AC

Figure: A sketch of an invariant expanding cone C and its image AC = {Av |v ∈ C}, given
A ∈ R2×2.
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Results I

Theorem

For any ξ ∈ Φtrap ∩ Φcone, the normal form fξ has a topological attractor with a
positive Lyapunov exponent.

Our construction of a trapping region requires

ϕ1(ξ) = δR − τRλ
u
L,

ϕ2(ξ) = δR(λ
s
L + 1)− λu

L(τR + (δR + τR)λ
s
L),

ϕ3(ξ) = δR − (δR + τR − (τR + 1)λu
L)λ

u
L,

ϕ4(ξ) = δR − (τR + δL + δR − (1 + τR)λ
u
L)λ

u
L,

ϕ5(ξ) = δR − (δR + τR − (1 + λu
R)λ

u
L)λ

u
L.
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Results II

The construction of an invariant expanding cone requires

θ1(ξ) = (δL + δR − τLτR)
2 − 4δLδR , (1)

θ2(ξ) = τ2
L + δ2

L − 1 + 2τL min
(

0,−δR
τR

, qL, ã

)
, (2)

θ3(ξ) = τ2
R + δ2

R − 1 + 2τR max
(

0,−δL
τL

, qR , b̃

)
, (3)

where

qL = −τL
2

(
1 −

√
1 − 4δL

τ2
L

)
, qR = −τR

2

(
1 −

√
1 − 4δR

τ2
R

)
,
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Results III

and

ã =
δL − δR − τLτR −

√
θ1(ξ)

2τR
, b̃ =

δR − δL − τLτR −
√
θ1(ξ)

2τL
,

assuming θ1(ξ) > 0.
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Results IV
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Figure: A 2D slice of Φtrap ∩ Φcone ⊂ R4.
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Extension to higher dimensions I

In the N-dimensional setting, suppose, the fixed point Y has exactly one unstable
eigenvalue λ1

L > 1 and the fixed point X has exactly one unstable eigenvalue λ1
R < −1.

We have been able to construct an N-dimensional trapping region in an open parameter
region of the parameter space.
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Extension to higher dimensions II
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Figure: Our trapping region construction is valid when the absolute values of the stable
eigenvalues are all less than the indicated value of r .
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Summary

We have used renormalization to explain how the parameter space ΦBYG is divided
into regions according to the number of connected components of an attractor.
We have further shown how the robust chaos extends more broadly to
orientation-reversing and non-invertible piecewise-linear maps.
We have also constructed an N-dimensional equivalent of a trapping region in the
phase space, verifying the existence of an attractor for the higher-dimensional
border-collision normal form.
It remains to apply a similar renormalization technique in a more generalized
parameter setting and determine the analogue of the existence of a higher
dimensional invarient-expanding cone, that will prove the existence of robust chaos.
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The End

Thank you! Questions?
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