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Border-collision normal form

▶ Piecewise-linear maps arise when modeling systems with switches, thresholds and
other abrupt events.

▶ In our project, we study the two-dimensional border-collision normal form (Nusse
& Yorke, 1992), given by

fξ(x , y) =



[
τL 1
−δL 0

][
x

y

]
+

[
1
0

]
, x ≤ 0,[

τR 1
−δR 0

][
x

y

]
+

[
1
0

]
, x ≥ 0.

▶ Here (x , y) ∈ R2, and ξ = (τL, δL, τR , δR) ∈ R4 are the parameters.



Phase portrait of a chaotic attractor
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Figure: A sketch of the phase portrait of fξ with ξ ∈ ΦBYG.



Renormalisation operator

▶ Renormalisation involves showing that, for some member of a family of maps, a
higher iterate or induced map is conjugate to different member of this family of
maps.

▶ Although the second iterate f 2
ξ has four pieces, relevant dynamics arise in only two

of these. We have

f 2
ξ (x , y) =



[
τLτR − δL τR

−δRτL −δR

][
x

y

]
+

[
τR + 1
−δR

]
, x ≤ 0,[

τ2
R − δR τR

−δRτR −δR

][
x

y

]
+

[
τR + 1
−δR

]
, x ≥ 0.



Renormalisation operator
▶ Now f 2

ξ can be transformed to fg(ξ), where g is the renormalisation operator
(Ghosh & Simpson, 2022.) g : R4 → R4, given by

τ̃L = τ2
R − 2δR ,

δ̃L = δ2
R ,

τ̃R = τLτR − δL − δR ,

δ̃R = δLδR .

▶ We perform a coordinate change to put f 2
ξ in the normal form :

[
x̃ ′

ỹ ′

]
=



[
τ̃L 1
−δ̃L 0

][
x̃

ỹ

]
+

[
1
0

]
, x̃ ≤ 0,[

τ̃R 1
−δ̃R 0

][
x̃

ỹ

]
+

[
1
0

]
, x̃ ≥ 0.



Results

▶ We consider the parameter region

Φ =
{
ξ ∈ R4∣∣τL > δL + 1, δL > 0, τR < −(δR + 1), δR > 0

}
.

▶ The stable and the unstable manifolds of the fixed point Y intersect if and only if
ϕ+(ξ) ≤ 0.

▶ The attractor is often destroyed at ϕ+(ξ) = 0 which is a homoclinic bifurcation
(Banerjee, Yorke & Grebogi, 1998), and thus focused their attention on the region

ΦBYG =
{
ξ ∈ Φ

∣∣ϕ+(ξ) > 0
}
.

where

ϕ+(ξ) = ζ0 = δR − (τR + δL + δR − (1 + τR)λ
u
L)λ

u
L.
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Figure: The sketch of two-dimensional cross-section of ΦBYG when δL = δR = 0.01.



Results

Theorem (Ghosh & Simpson, 2022)

The Rn are non-empty, mutually disjoint, and converge to the fixed point (1, 0,−1, 0)
as n → ∞. Moreover,

ΦBYG ⊂
∞⋃
n=0

Rn.

▶ Let,
Λ(ξ) = cl(W u(X )).

Theorem (Ghosh & Simpson, 2022)

For the map fξ with any ξ ∈ R0, Λ(ξ) is bounded, connected, and invariant. Moreover,
Λ(ξ) is chaotic (positive Lyapunov exponent).



Results

Theorem (Ghosh & Simpson, 2022)

For any ξ ∈ Rn where n ≥ 0, gn(ξ) ∈ R0 and there exist mutually disjoint sets
S0, S1, . . . ,S2n−1 ⊂ R2 such that fξ(Si ) = S(i+1) mod 2n and

f 2n
ξ |Si is affinely conjugate to fgn(ξ)|Λ(gn(ξ))

for each i ∈ {0, 1, . . . , 2n − 1}. Moreover,

2n−1⋃
i=0

Si = cl(W u(γn)),

where γn is a saddle-type periodic solution of our map fξ having the symbolic itinerary
Fn(R) given by Table 1.



Results

n Fn(W)

0 R

1 LR

2 RRLR

3 LRLRRRLR

4 RRLRRRLRLRLRRRLR

Table: The first 5 words in the sequence generated by repeatedly applying the substitution
rule (L,R) 7→ (RR, LR) to W = R.
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Generalised parameter region

Now we consider the more generalised parameter region considering the
orientation-reversing and non-invertible cases,

Φ =
{
ξ ∈ R4 ∣∣ τL > |δL + 1|, τR < −|δR + 1|

}
.

where we define

Φtrap = {ξ ∈ Φ| ϕi (ξ) > 0, i = 1, . . . , 5} ,

and

Φcone = {ξ ∈ Φ|θi (ξ) ≥ 0, i = 1, . . . , 3} .



Typical phase portraits
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Figure: Typical phase portraits of the chaotic attractor for the invertible case (δLδR > 0).



Typical phase portraits
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Figure: Typical phase portraits of the chaotic attractor for the non-invertible case (δLδR < 0).



Invariant expanding cones

Chaos in ΦBYG can be proved by constructing an invariant expanding cone in tangent
space (Glendinning & Simpson, 2021). We have extended this to Φ.

C

AC

Figure: A sketch of an invariant expanding cone C and its image AC = {Av |v ∈ C}, given
A ∈ R2×2.



Results

Theorem (Ghosh, McLachlan, & Simpson, 2023)

For any ξ ∈ Φtrap ∩ Φcone, the normal form fξ has a topological attractor with a
positive Lyapunov exponent.
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Figure: A 2D slice of Φtrap ∩ Φcone ⊂ R4.



A component computing Algorithm

▶ This method originates with (Eckstein, 2006) and is described by (Avrutin et al,
2007). The effectiveness of the method relies on the following result:

Lemma
Suppose a compact invariant set Ψ of a continuous map f has k ≥ 2 connected
components, and f has an orbit that visits all components. Then the components can
be labelled as Ψ1,Ψ2, . . . ,Ψk such that f (Ψ1) = Ψ2, f (Ψ2) = Ψ3, . . . , f (Ψk−1) = Ψk ,
and f (Ψk) = Ψ1.

▶ Now fix ξ and suppose fξ has an attractor Λ with k ≥ 1 connected components.
We use the algorithm to calculate k .

▶ Fix ε > 0 (for example ε = 0.001), M > 0 (we used M = 106), and let J = ∅.
▶ Choose some initial point assumed to be in the basin of attraction of Λ and iterate

it under fξ a reasonably large number of times (we used 104 iterations) to remove
transient dynamics and obtain a point in Λ, or extremely close to Λ, call it (x0, y0).



A component computing Algorithm

▶ Iterate further, and for all i = 1, 2, . . . ,M evaluate the distance (Euclidean norm in
R2) between f iξ (x0, y0) and (x0, y0).

▶ If this distance is less than ε, append the number i to the set J.
▶ Finally evaluate the greatest common divisor of the elements in J — this is our

estimate for the value of k .



The orientation-reversing case

▶ Let

Φ(2) = {ξ ∈ Φ | δL < 0, δR < 0} ,

be the subset of Φ for which the BCNF is orientation-reversing.
▶ The attractor Λ which is again a closure of the unstable manifold of X faces a

crisis at ζ(2)0 = 0 where

ζ
(2)
0 = ϕ−(ξ) = δR − (δR + τR − (1 + λu

R)λ
u
L)λ

u
L .



The orientation-reversing case

▶ Now, ξ ∈ Φ(2) implies g(ξ) ∈ Φ(1), so we again use the preimages of ϕ+(ξ) = 0
under g to define the region boundaries: Specifically we let

R(2)
0 =

{
ξ ∈ Φ(2)

∣∣∣ϕ−(ξ) > 0, ϕ+(g(ξ)) ≤ 0, α(ξ) < 0
}
,

R(2)
n =

{
ξ ∈ Φ(2)

∣∣∣ϕ+ (gn(ξ)) > 0, ϕ+
(
gn+1(ξ)

)
≤ 0, α(ξ) < 0

}
, for all n ≥ 1.

where

α(ξ) = τLτR + (δL − 1)(δR − 1).

▶ This brings us to the proposition

Proposition (Ghosh, McLachlan, & Simpson, 2023, In Prep.)

If ξ ∈ R(2)
n with n ≥ 1, then g(ξ) ∈ R(1)

n−1.



The orientation-reversing case
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Figure: The sketch of two-dimensional cross-section of Φ(2), when δL = −0.1 and δR = −0.2.



The orientation-reversing case
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The non-invertible case δL > 0, δR < 0

▶ Let

Φ(3) = {ξ ∈ Φ | δL > 0, δR < 0} ,

meaning the map is invertible.
▶ In this region an attractor can be destroyed by crossing the homoclinic bifurcation

ϕ+(ξ) = 0 or the heteroclinic bifurcation ϕ−(ξ) = 0.
▶ we define

ϕmin(ξ) = min[ϕ+(ξ), ϕ−(ξ)].

and

R(3)
n =

{
ξ ∈ Φ(3)

∣∣∣ϕmin (g
n(ξ)) > 0, ϕmin

(
gn+1(ξ)

)
≤ 0, α(ξ) < 0

}
,

for all n ≥ 0.



The non-invertible case δL > 0, δR < 0

▶ This brings us to a new proposition:

Proposition (Ghosh, McLachlan, & Simpson, 2023, In Prep.)

If ξ ∈ R(3)
n with n ≥ 1, then g(ξ) ∈ R(3)

n−1.



The non-invertible case δL > 0, δR < 0
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Figure: The sketch of two-dimensional cross-section of Φ(3), when δL = 0.3 and δR = −0.4.



The non-invertible case δL > 0, δR < 0
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The non-invertible case δL < 0, δR > 0

▶ It remains for us to consider

Φ(4) = {ξ ∈ Φ | δL < 0, δR > 0} ,

where the BCNF is again non-invertible.
▶ In this region the attractor is usually destroyed before the boundaries ϕ+(ξ) = 0

and ϕ−(ξ) = 0 in a heteroclinic bifurcation that cannot be characterised by an
explicit condition on the parameter values.

▶ Despite the extra complexities in Φ(4) it still appears that renormalisation is helpful
for explaining the bifurcation structure. Let

R(4)
0 =

{
ξ ∈ Φ(4)

∣∣∣ ϕmin(ξ) > 0, ϕmin(g(ξ)) ≤ 0, α(ξ) < 0
}
.

R(4)
n =

{
ξ ∈ Φ(4)

∣∣∣ ϕmin(g
n(ξ)) > 0, ϕmin(g

n+1(ξ)) ≤ 0, α(ξ) < 0, α(g(ξ)) < 0
}
.

(1)



The non-invertible case δL < 0, δR > 0

▶ This brings us to the new propostion:

Proposition (Ghosh, McLachlan, & Simpson, 2023.)

If ξ ∈ R(4)
n with n ≥ 1, then g(ξ) ∈ R(3)

n−1.



The non-invertible case δL < 0, δR > 0
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Figure: The sketch of two-dimensional cross-section of Φ(4), when δL = −0.4 and δR = 0.4.



The non-invertible case δL < 0, δR > 0
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The non-invertible case δL < 0, δR > 0
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Summary

▶ We have used renormalisation to explain how the parameter space ΦBYG is divided
into regions according to the number of connected components of an attractor.

▶ We have further shown how the robust chaos extends more broadly to
orientation-reversing and non-invertible piecewise-linear maps.

▶ We have also extended the application of renormalisation to the
orientation-reversing and non-invertible map in a more generalised parameter
setting.

▶ It remains to determine the analogue of the existence of a higher dimensional
robust chaos parameter region of the border-collision normal form.
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The End

Thank you! Questions?


