# BIFURCATION STRUCTURE OF ROBUST CHAOS IN A GENERALISED SETTING OF PIECEWISE-LINEAR MAPS.

## I. Ghosh, R.I. McLachlan, D.J.W. Simpson





### Introduction

Here I use geometry to explain robust chaotic dynamics in piecewise-linear (PWL) maps. PWL maps are used for modeling systems with switches, thresholds, and other abrupt events. We study the two-dimensional *border-collision normal form*:

$$f_{\xi}(x,y) = \begin{cases} \begin{bmatrix} \tau_L & 1 \\ -\delta_L & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}, & x \le 0, \\ \tau_R & 1 \\ -\delta_R & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}, & x \ge 0, \end{cases}$$

with variables  $x, y \in \mathbb{R}$ , and parameter vector  $\xi = (\tau_L, \delta_L, \tau_R, \delta_R) \in \mathbb{R}^4$ .

### A renormalisation operator

Although the second iterate  $f_{\xi}^2$  has four pieces, for many values of  $\xi$  only two of these are relevant:

$$f_{\xi}^{2}(x,y) = \begin{cases} \begin{bmatrix} \tau_{L}\tau_{R} - \delta_{L} & \tau_{R} \\ -\delta_{R}\tau_{L} & -\delta_{R} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \tau_{R} + 1 \\ -\delta_{R} \end{bmatrix}, & x \leq 0, \\ \begin{bmatrix} \tau_{R}^{2} - \delta_{R} & \tau_{R} \\ -\delta_{R}\tau_{R} & -\delta_{R} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \tau_{R} + 1 \\ -\delta_{R} \end{bmatrix}, & x \geq 0. \end{cases}$$

Then  $f_{\xi}^2$  is equivalent to  $f_{g(\xi)}$  under a change of coordinates, where g is the renormalisation operator defined by

$$\tilde{\tau}_L = \tau_R^2 - 2\delta_R,$$

$$\tilde{\delta}_L = \delta_R^2,$$

$$\tilde{\tau}_R = \tau_L \tau_R - \delta_L - \delta_R,$$

$$\tilde{\delta}_R = \delta_L \delta_R.$$

# The classical robust chaos parameter region

Robust chaos refers to the absence of periodic windows. We consider the parameter region

$$\Phi = \{ \xi \in \mathbb{R}^4 \, | \, \tau_L > |\delta_L + 1|, \, \tau_R < -|\delta_R + 1| \} \,,$$

where  $f_{\mathcal{E}}$  has two saddle fixed points X and Y, see Fig. 1. Within  $\Phi$ 

$$\Phi_{\text{BYG}} = \{ \xi \in \Phi \mid \delta_L > 0, \delta_R > 0, \phi_4(\xi) > 0 \},$$

where  $\phi_4(\xi) = \delta_R - (\tau_R + \delta_L + \delta_R - (1 + \tau_R)\lambda_L^u)\lambda_L^u$ , is the classical robust chaos parameter region of [1]. For all  $n \ge 0$ , define

$$\zeta_n(\xi) = \phi_4(g^n(\xi)),$$

and

$$\mathcal{R}_n = \{ \xi \in \Phi \mid \zeta_n(\xi) > 0, \zeta_{n+1}(\xi) \le 0 \},$$

see Fig. 2. Our main result is that for all  $n \ge 0$  and  $\xi \in \mathcal{R}_n$  the map  $f_\xi$  has a chaotic attractor with  $2^n$  connected components [2], e.g. Fig. 3. This was obtained by using the renormalisation operator and reveals previously unknown bifurcation structure within the robust chaos parameter region.

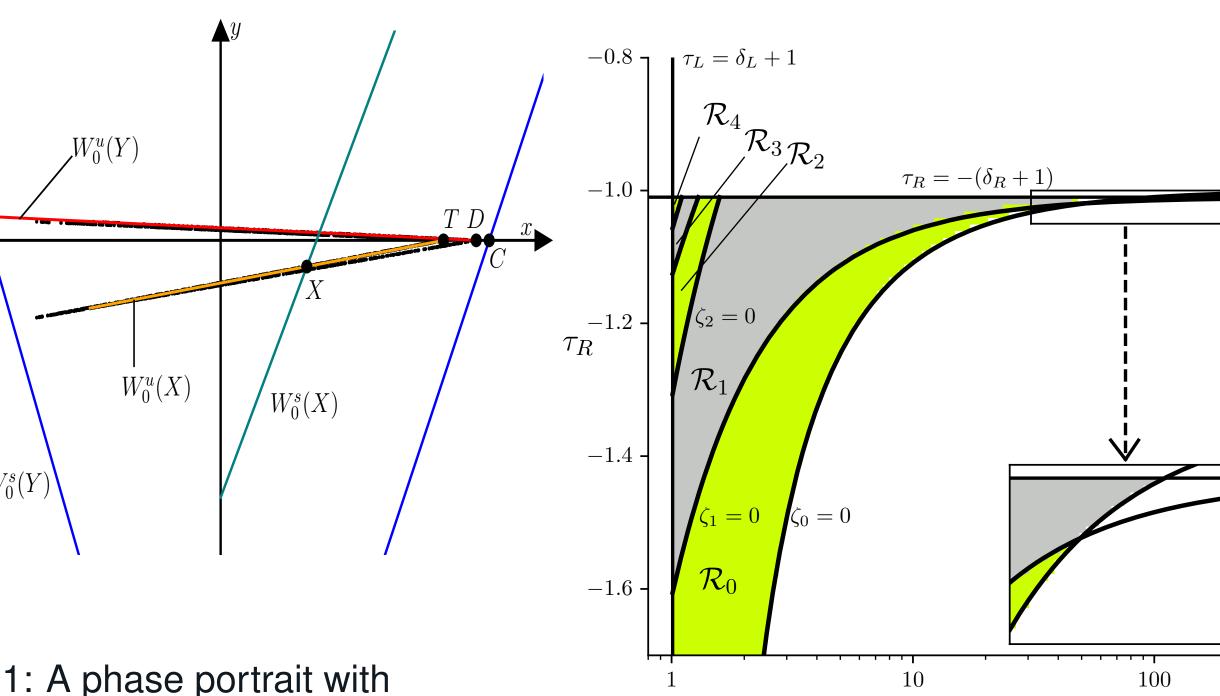


Fig. 1: A phase portrait with  $\xi \in \mathcal{R}_0 \subset \Phi_{\mathrm{BYG}}$ , showing the initial line segments of the stable and unstable manifolds of the fixed points X and Y, as well as an additional segment of the stable manifold of Y. The attractor (computed numerically) is shown in black.

Fig. 2: Two-dimensional cross-sections of the parameter regions  $\mathcal{R}_n$ , where  $\mathcal{R}_n$  is visible for all  $n=0,1,\ldots,4$ . The region  $\Phi_{\mathrm{BYG}}$  is bounded by  $\tau_L=\delta_L+1$ ,  $\tau_R=-(\delta_R+1),\,\zeta_0=0,\,\delta_L>0$ , and  $\delta_R>0$ .

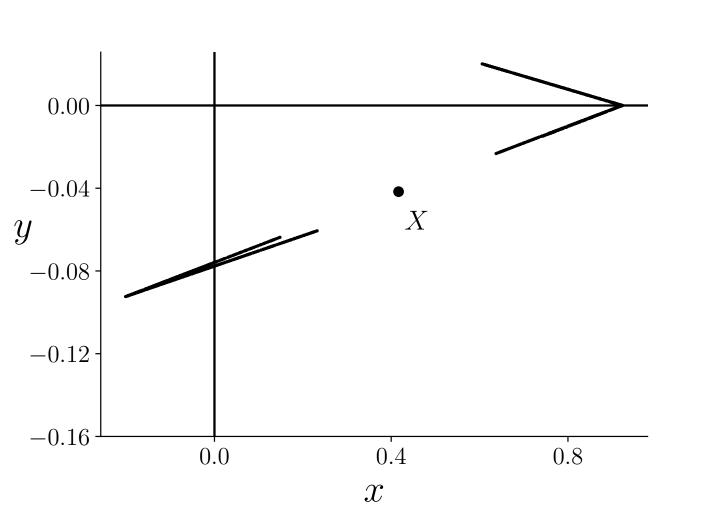


Fig. 3: A phase portrait with  $\xi \in \mathcal{R}_1$  where the attractor has two connected components.

### Invariant expanding cones

Chaos in  $\Phi_{\mathrm{BYG}}$  can be proved by constructing an invariant expanding cone, Fig. 4, in tangent space [3]. We have extended this to  $\Phi$ ; Figs. 5 and 6 show parameter values for which we have been able to explicitly construct a trapping region and a cone. For any  $\xi \in \Phi_{\mathrm{trap}} \cap \Phi_{\mathrm{cone}}$ ,  $f_{\xi}$  has a chaotic attractor [4].

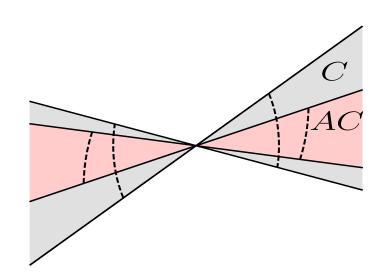
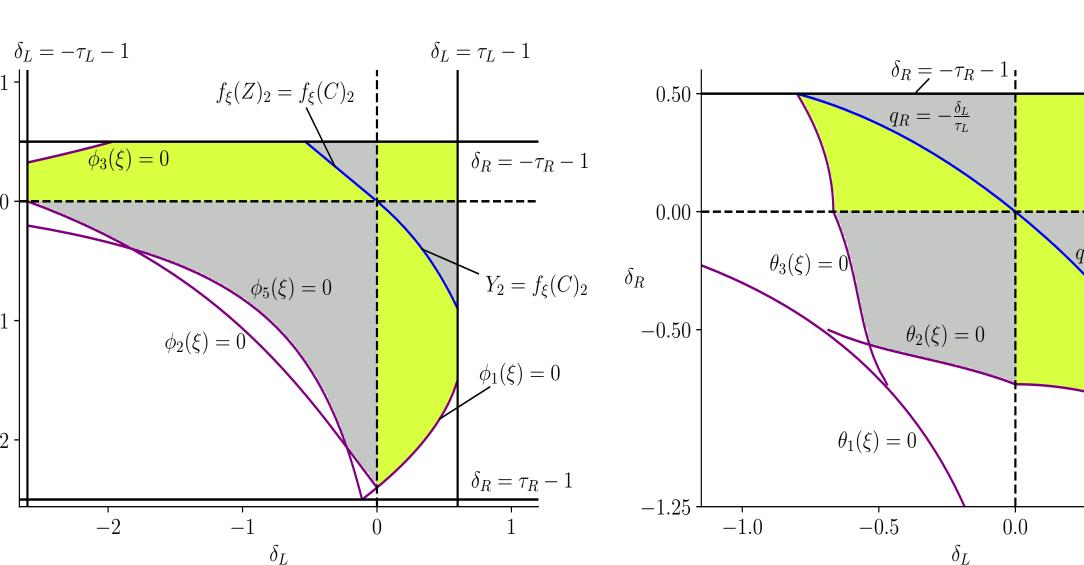
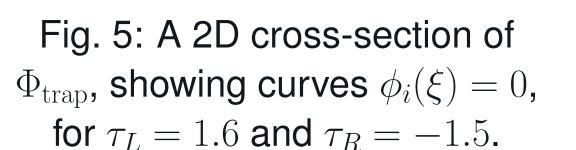
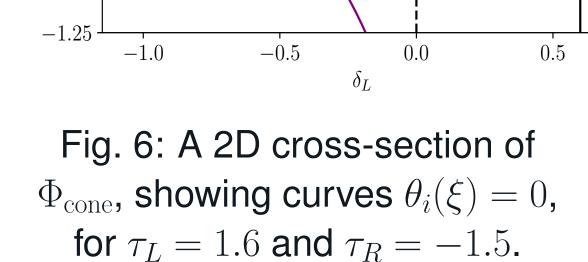


Fig. 4: A sketch of an invariant expanding cone C and its image  $AC = \{Av | v \in C\}$ , given  $A \in \mathbb{R}^{2 \times 2}$ .







# Extension to higher dimensions

In the N-dimensional setting, suppose the fixed point Y has exactly one unstable eigenvalue  $\lambda_L^1>1$  and the fixed point X has exactly one unstable eigenvalue  $\lambda_R^1<-1$ . We have been able to construct an N-dimensional trapping region in an open region of parameter space, see Fig. 7.

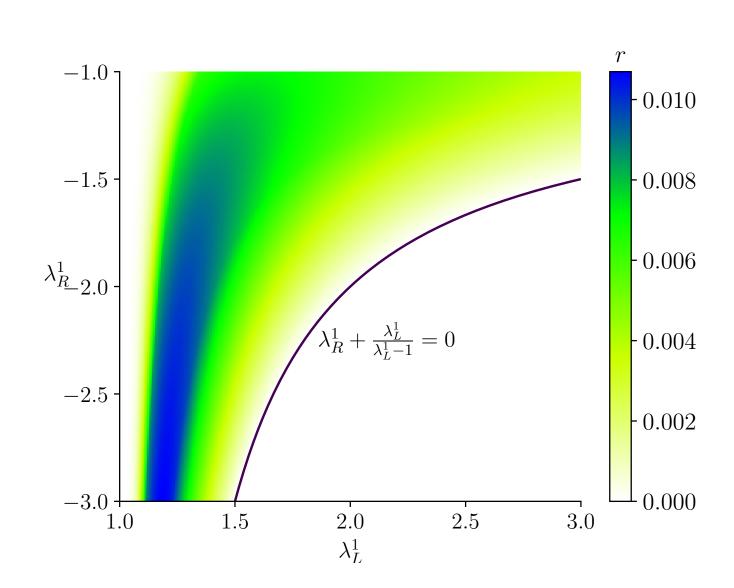


Fig. 7: Our trapping region construction is valid when the absolute values of the stable eigenvalues are all less than the indicated value of r.

### Acknowledgements

The authors were supported by Marsden Fund contract MAU1809, managed by Royal Society Te Aparangi.

#### References

- [1] S. Banerjee, J.A. Yorke, and C. Grebogi. *Phys. Rev. Lett.*, 80(14):3049–3052, 1998.
- [2] I. Ghosh, and D.J.W. Simpson. *Int. J. Bifurcation Chaos*, 32(12):2250181, 2022.
- [3] P.A. Glendinning, and D.J.W. Simpson. *Discrete Contin. Dyn. Syst.*, 41(7):3367–3387, 2021.
- [4] I. Ghosh, R. McLachlan, and D.J.W. Simpson. A generalised construction for robust chaos in two-dimensional piecewise-linear maps. *In preparation*.