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Introduction

Here I use geometry to explain robust chaotic dynamics in piecewise-linear
(PWL) maps. PWL maps are used for modeling systems with switches,
thresholds, and other abrupt events. We study the two-dimensional border-
collision normal form:
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with variables x, y ∈ R, and parameter vector ξ = (τL, δL, τR, δR) ∈ R4.

A renormalisation operator

Although the second iterate f 2
ξ has four pieces, for many values of ξ only two

of these are relevant:

f 2
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Then f 2
ξ is equivalent to fg(ξ) under a change of coordinates, where g is the

renormalisation operator defined by

τ̃L = τ 2R − 2δR,

δ̃L = δ2R,

τ̃R = τLτR − δL − δR,

δ̃R = δLδR.

The classical robust chaos parameter
region

Robust chaos refers to the absence of periodic windows. We consider the
parameter region

Φ =
{
ξ ∈ R4

∣∣ τL > |δL + 1|, τR < −|δR + 1|
}
,

where fξ has two saddle fixed points X and Y , see Fig. 1. Within Φ

ΦBYG = {ξ ∈ Φ | δL > 0, δR > 0, ϕ4(ξ) > 0} ,
where ϕ4(ξ) = δR − (τR + δL + δR − (1 + τR)λ

u
L)λ

u
L, is the classical robust

chaos parameter region of [1]. For all n ≥ 0, define

ζn(ξ) = ϕ4(g
n(ξ)),

and

Rn = {ξ ∈ Φ | ζn(ξ) > 0, ζn+1(ξ) ≤ 0},
see Fig. 2. Our main result is that for all n ≥ 0 and ξ ∈ Rn the map fξ
has a chaotic attractor with 2n connected components [2], e.g. Fig. 3. This
was obtained by using the renormalisation operator and reveals previously
unknown bifurcation structure within the robust chaos parameter region.
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Fig. 1: A phase portrait with
ξ ∈ R0 ⊂ ΦBYG, showing the

initial line segments of the stable
and unstable manifolds of the

fixed points X and Y , as well as
an additional segment of the

stable manifold of Y . The
attractor (computed numerically)

is shown in black.
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Fig. 2: Two-dimensional
cross-sections of the parameter
regions Rn, where Rn is visible
for all n = 0, 1, . . . , 4. The region
ΦBYG is bounded by τL = δL + 1,
τR = −(δR + 1), ζ0 = 0, δL > 0,

and δR > 0.
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Fig. 3: A phase portrait with ξ ∈ R1 where the attractor has two connected
components.

Invariant expanding cones

Chaos in ΦBYG can be proved by constructing an invariant expanding cone,
Fig. 4, in tangent space [3]. We have extended this to Φ; Figs. 5 and 6
show parameter values for which we have been able to explicitly construct
a trapping region and a cone. For any ξ ∈ Φtrap ∩ Φcone, fξ has a chaotic
attractor [4].
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Fig. 4: A sketch of an invariant expanding cone C and its image
AC = {Av|v ∈ C}, given A ∈ R2×2.
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Fig. 5: A 2D cross-section of
Φtrap, showing curves ϕi(ξ) = 0,

for τL = 1.6 and τR = −1.5.

−1.0 −0.5 0.0 0.5
δL

−1.25

−0.50

0.00

0.50

δR

θ2(ξ) = 0

θ3(ξ) = 0

θ1(ξ) = 0

qL = −δR
τR

qR = −δL
τL

δL = τL − 1δR = −τR − 1

0

0

0

0

0

Fig. 6: A 2D cross-section of
Φcone, showing curves θi(ξ) = 0,

for τL = 1.6 and τR = −1.5.

Extension to higher dimensions

In the N -dimensional setting, suppose the fixed point Y has exactly one
unstable eigenvalue λ1

L > 1 and the fixed point X has exactly one unstable
eigenvalue λ1

R < −1. We have been able to construct an N -dimensional
trapping region in an open region of parameter space, see Fig. 7.
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Fig. 7: Our trapping region construction is valid when the absolute values
of the stable eigenvalues are all less than the indicated value of r.
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