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Border-collision normal form

Piecewise-linear maps arise when modeling systems with switches, thresholds and
other abrupt events.
In our project, we study the two-dimensional border-collision normal form (Nusse
& Yorke, 1992), given by

fξ(x, y) =



[
τL 1

−δL 0

][
x

y

]
+

[
1

0

]
, x ≤ 0,[

τR 1

−δR 0

][
x

y

]
+

[
1

0

]
, x ≥ 0.

Here (x, y) ∈ R2, and ξ = (τL, δL, τR, δR) ∈ R4 are the parameters.
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Phase portrait of a chaotic attractor
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Figure: A sketch of the phase portrait of fξ with ξ ∈ ΦBYG.
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Renormalisation operator

Renormalisation involves showing that, for some members of a family of maps, a
higher iterate or induced map is conjugate to different member of this family of
maps.

Although the second iterate f2
ξ has four pieces, relevant dynamics arise in only two

of these. We have

f2
ξ (x, y) =



[
τLτR − δL τR

−δRτL −δR

][
x

y

]
+

[
τR + 1

−δR

]
, x ≤ 0,[

τ2R − δR τR

−δRτR −δR

][
x

y

]
+

[
τR + 1

−δR

]
, x ≥ 0.
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Renormalisation operator
Now f2

ξ can be transformed to fg(ξ), where g is the renormalisation operator
(Ghosh & Simpson, 2022.) g : R4 → R4, given by

τ̃L = τ2R − 2δR,

δ̃L = δ2R,

τ̃R = τLτR − δL − δR,

δ̃R = δLδR.

We perform a coordinate change to put f2
ξ in the normal form :

[
x̃′

ỹ′

]
=



[
τ̃L 1

−δ̃L 0

][
x̃

ỹ

]
+

[
1

0

]
, x̃ ≤ 0,[

τ̃R 1

−δ̃R 0

][
x̃

ỹ

]
+

[
1

0

]
, x̃ ≥ 0.
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Results

We consider the parameter region

Φ =
{
ξ ∈ R4

∣∣τL > δL + 1, δL > 0, τR < −(δR + 1), δR > 0
}
.

Let

ϕ+(ξ) = ζ0 = δR − (τR + δL + δR − (1 + τR)λ
u
L)λ

u
L.

The stable and the unstable manifolds of the fixed point Y intersect if and only if
ϕ+(ξ) ≤ 0.

The attractor is often destroyed at ϕ+(ξ) = 0 which is a homoclinic bifurcation
(Banerjee, Yorke & Grebogi, 1998), and thus focused their attention on the region

ΦBYG =
{
ξ ∈ Φ

∣∣ϕ+(ξ) > 0
}
.
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Results
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Figure: The sketch of two-dimensional cross-section of ΦBYG when δL = δR = 0.01.
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Results

Theorem (Ghosh & Simpson, 2022)

The Rn are non-empty, mutually disjoint, and converge to the fixed point (1, 0,−1, 0)
as n → ∞. Moreover,

ΦBYG ⊂
∞⋃
n=0

Rn.

Let,
Λ(ξ) = cl(W u(X)).

Theorem (Ghosh & Simpson, 2022)

For the map fξ with any ξ ∈ R0, Λ(ξ) is bounded, connected, and invariant. Moreover,
Λ(ξ) is chaotic (positive Lyapunov exponent).
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Results

Theorem (Ghosh & Simpson, 2022)

For any ξ ∈ Rn where n ≥ 0, gn(ξ) ∈ R0 and there exist mutually disjoint sets
S0, S1, . . . , S2n−1 ⊂ R2 such that fξ(Si) = S(i+1) mod 2n and

f2n

ξ |Si is affinely conjugate to fgn(ξ)|Λ(gn(ξ))

for each i ∈ {0, 1, . . . , 2n − 1}. Moreover,

2n−1⋃
i=0

Si = cl(W u(γn)),

where γn is a saddle-type periodic solution of our map fξ having the symbolic itinerary
Fn(R) given by Table 1.
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Results

n Fn(W)

0 R

1 LR

2 RRLR

3 LRLRRRLR

4 RRLRRRLRLRLRRRLR

Table: The first 5 words in the sequence generated by repeatedly applying the substitution rule
(L,R) 7→ (RR,LR) to W = R.
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Results
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Devaney Chaos
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(a) δL = 0.2, δR = 0.5 (b) δL = 0.64 and δR = 0.7
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Devaney Chaos

Theorem (Ghosh & Simpson, 2022)

Let ξ ∈ ΦBYG and suppose J1(ξ) > 1 and λs
L + |λs

R| < 1. Then W s(X) is dense in a
triangular region containing Λ.

Theorem (Ghosh & Simpson, 2022)

Let ξ ∈ ΦBYG and suppose J1(ξ) > 1 and J2(ξ) < 1. Then, fξ is chaotic in the sense
of Devaney on Λ.

Indranil Ghosh https://indrag49.github.io Advances in bifurcations and dynamics of low-dimensional maps.

https://indrag49.github.io


Generalised parameter region

Now we consider the more generalised parameter region considering the
orientation-reversing and non-invertible cases,

Φ =
{
ξ ∈ R4

∣∣ τL > |δL + 1|, τR < −|δR + 1|
}
.
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Typical phase portraits
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(a) δL > 0, δR > 0 (b) δL < 0, δR < 0

Figure: Typical phase portraits of the chaotic attractor for the invertible case (δLδR > 0).
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Typical phase portraits
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Figure: Typical phase portraits of the chaotic attractor for the non-invertible case (δLδR < 0).
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Invariant expanding cones

Chaos in ΦBYG can be proved by constructing an invariant expanding cone in tangent
space (Glendinning & Simpson, 2021). We have extended this to Φ.

C

AC

Figure: A sketch of an invariant expanding cone C and its image AC = {Av|v ∈ C}, given
A ∈ R2×2.
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Robust Chaos in a generalised setting

Theorem (Ghosh, McLachlan, & Simpson, 2023)

For any ξ ∈ Φtrap ∩ Φcone, the normal form fξ has a topological attractor with a
positive Lyapunov exponent.
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Robust Chaos in a generalised setting
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Figure: A 2D slice of Φtrap ∩ Φcone ⊂ R4.
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The orientation-reversing case

Let

Φ(2) = {ξ ∈ Φ | δL < 0, δR < 0} ,

be the subset of Φ for which the BCNF is orientation-reversing.

The attractor Λ which is again a closure of the unstable manifold of X faces a
crisis at ζ(2)0 = 0 where

ζ
(2)
0 = ϕ−(ξ) = δR − (δR + τR − (1 + λu

R)λ
u
L)λ

u
L .
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The orientation-reversing case

Now, ξ ∈ Φ(2) implies g(ξ) ∈ Φ(1), so we again use the preimages of ϕ+(ξ) = 0
under g to define the region boundaries: Specifically we let

R(2)
0 =

{
ξ ∈ Φ(2)

∣∣∣ϕ−(ξ) > 0, ϕ+(g(ξ)) ≤ 0, α(ξ) < 0
}
,

R(2)
n =

{
ξ ∈ Φ(2)

∣∣∣ϕ+ (gn(ξ)) > 0, ϕ+
(
gn+1(ξ)

)
≤ 0, α(ξ) < 0

}
, for all n ≥ 1.

where

α(ξ) = τLτR + (δL − 1)(δR − 1).

This brings us to the proposition

Proposition (Ghosh, McLachlan, & Simpson, 2024)

If ξ ∈ R(2)
n with n ≥ 1, then g(ξ) ∈ R(1)

n−1.
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The orientation-reversing case

(0,−1)

y
=
−τR

x
− 1

y
=
−
τ
L x−

1

Πξ Λ̃

x

y

Xξ

hξ(Πξ)

Λ

x̃

ỹ

Xξ̃

(a) ξ = ξ
(2)
ex ∈ R(2)

1 (b) ξ = g(ξ
(2)
ex ) ∈ R(1)

0

Indranil Ghosh https://indrag49.github.io Advances in bifurcations and dynamics of low-dimensional maps.

https://indrag49.github.io


The non-invertible case δL > 0, δR < 0

Let

Φ(3) = {ξ ∈ Φ | δL > 0, δR < 0} ,

meaning the map is invertible.
In this region an attractor can be destroyed by crossing the homoclinic bifurcation
ϕ+(ξ) = 0 or the heteroclinic bifurcation ϕ−(ξ) = 0.
we define

ϕmin(ξ) = min[ϕ+(ξ), ϕ−(ξ)].

and

R(3)
n =

{
ξ ∈ Φ(3)

∣∣∣ϕmin (g
n(ξ)) > 0, ϕmin

(
gn+1(ξ)

)
≤ 0, α(ξ) < 0

}
,

for all n ≥ 0.
Indranil Ghosh https://indrag49.github.io Advances in bifurcations and dynamics of low-dimensional maps.

https://indrag49.github.io


The non-invertible case δL > 0, δR < 0

This brings us to a new proposition:

Proposition (Ghosh, McLachlan, & Simpson, 2024)

If ξ ∈ R(3)
n with n ≥ 1, then g(ξ) ∈ R(3)

n−1.

(0,−1)

y =
−τR

x−
1

y
=
−
τ
L x−

1

Πξ

Λ̃

x

y

Xξ

hξ(Πξ)

Λ

x̃

ỹ

Xξ̃

(a) ξ = ξ
(3)
ex ∈ R(3)

1 (b) ξ = g(ξ
(3)
ex ) ∈ R(3)

0
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The non-invertible case δL < 0, δR > 0

It remains for us to consider

Φ(4) = {ξ ∈ Φ | δL < 0, δR > 0} ,

where the BCNF is again non-invertible.

In this region the attractor is usually destroyed before the boundaries ϕ+(ξ) = 0
and ϕ−(ξ) = 0 in a heteroclinic bifurcation that cannot be characterised by an
explicit condition on the parameter values.

Despite the extra complexities in Φ(4) it still appears that renormalisation is helpful
for explaining the bifurcation structure. Let

R(4)
0 =

{
ξ ∈ Φ(4)

∣∣∣ ϕmin(ξ) > 0, ϕmin(g(ξ)) ≤ 0, α(ξ) < 0
}
.

R(4)
n =

{
ξ ∈ Φ(4)

∣∣∣ ϕmin(g
n(ξ)) > 0, ϕmin(g

n+1(ξ)) ≤ 0, α(ξ) < 0, α(g(ξ)) < 0
}
.

(1)
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The non-invertible case δL < 0, δR > 0

This brings us to the new propostion:

Proposition (Ghosh, McLachlan, & Simpson, 2024)

If ξ ∈ R(4)
n with n ≥ 1, then g(ξ) ∈ R(3)

n−1.

(0,−1)

y
=
−τ
R
x
− 1

y
=
−
τ
L x−

1

Πξ

Λ̃

x

y

Xξ

hξ(Πξ)

Λ

x̃

ỹ

Xξ̃

(a) ξ = ξ
(4)
ex ∈ R(4)

1 (b) ξ = g(ξ
(4)
ex ) ∈ R(3)

0
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Numerics

We verify these bifurcation structures numerically by using Eckstein’s greatest
common divisor algorithm (Eckstein, 2006), described by Avrutin et al, 2007 to
estimate from sample orbits the number of connected components in the attractor.
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(a) δL = −0.1, δR = −0.2. (b) δL = −0.2, δR = −0.2.
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Numerics
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(a) δL = 0.5, δR = −0.4. (b) δL = 0.3, δR = −0.4.
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Numerics
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Numerics
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Higher-dimensional setting

Let n ≥ 2. Suppose α > 1 is an eigenvalue of AL, and −β < −1 of AR with
multiplicity one, and all other eigenvalues of AL and AR have modulus at most
0 < r < 1.

Theorem (Ghosh & Simpson, 2024)

Holding the above assumption and

r(n− 1) <
3

7

(
1− 1

α

)
, r(n− 1) <

3

7

(
1− 1

β

)
,

r(n− 1) <
1

10

(
1

α
+

1

β
− 1

)
,

then f has a topological attractor with a positive Lyapunov exponent.
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Higher-dimensional setting

Figure: The construction of a forward invariant region Ω for n = 3.
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Higher-dimensional setting
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Figure: Robust chaos parameter region for the two-dimensional map, with our
higher-dimensional construction portrayed on top of it. We chose n = 2 for simplicity.
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Future Directions

We expect our construction in the two-dimensional setting could be adapted to
verify robust chaos beyond the boundaries reported.

It would be interesting to see if renormalisation schemes based on other symbolic
substitution rules can be used to explain parameter regimes where the BCNF has
attractors with other numbers of components, e.g. three components.
Maps with multiple directions of instability should be just as relevant, giving the
possibility of so-called wild chaos, and it remains to treat these scenarios.
Can apply similar sort of renormalisation to the circle map.
As one application I want to apply n–dimensional construction as the key space for
an encryption scheme.
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Can apply similar sort of renormalisation to the circle map.

As one application I want to apply n–dimensional construction as the key space for
an encryption scheme.
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Impact Oscillators

Many engineering systems involve vibrations and impacts, e.g. impact print
hammers, gear assemblies, machinery for milling, bells, and shock absorbers.

Figure: Examples of simple impacting systems: (a) a bell, (b) a gear assembly, (c) an
impact print hammer. Picture taken from di Bernardo, Champneys, Budd, Kowalczyk,
2008.
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The impact oscillator model

x(t)

blockF cos(ωt)b

k

x(t) = 0

wall

Figure: A hard-impact oscillator model: ẍ+ bẋ+ x+ 1 = F cos(ωt) and ẋ 7→ −rẋ whenever
x = 0.

If the block hits the wall with zero velocity, this is a grazing impact.
A grazing bifurcation occurs when the limit cycle has a grazing impact.
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Experimental example

Figure: Bifurcation diagram obtained from the paper by Pavlovskaia et al., Int. J. Bifurcation
Chaos, 2010.

Why does a stable period-two solution appear so close to grazing?
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Model

The nondimensionalised equations of our oscillator model are given by

ẋ = y,

ẏ = F cos(ωt)− by − x− 1,

where x(t) and y(t) are the displacement and the velocity of the oscillator with the
damping ratio b > 0.

We treat F as the primary bifurcation parameter.
The values of F and t that occur at grazing are implicitly given by

tgraz =
1

ω
tan−1

(
bω

1− ω2

)
,

F 2
graz = (1− ω2)2 + b2ω2.
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Typical phase portrait

Figure: A typical phase portrait of the impact oscillator.
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Bifurcation diagram

Figure: A typical bifurcation diagram of the impact oscillator.
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Poincaré map

Figure: An illustration of the Poincaré map.

We use y = 0 as the Poincaré section. The map is given by (x′, z′) = P (x, z)
where z = t− tgraz mod 2π

ω .
We evaluate P numerically, using an explicit formula for the flow, and event
detection for determining where orbits return to the Poincaré section.
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Poincaré map

The map P can be expressed as

P = Pglobal ◦ Pdisc.

Here

Pdisc(x, z;F ) =



[
x

z

]
, x ≤ 0,

[
r2x+ Õ(3)

z −
√
2

ω (1 + r)
√
x+ Õ(2)

]
, x > 0.
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Poincaré map

To first order, the Taylor expansion of Pglobal about (x, z;F ) = (0, 0;Fgraz) can be
written as

Pglobal = K

[
x
z

]
+

F − Fgraz

Fgraz

[
1− a11
−a21

]
+O(2),

where

K =

[
a11 ω2a12
a21
ω2 a22

]
,

and each aij is the (i, j) entry of

A = exp

(
2π

ω

[
0 1
−1 −b

])
.
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Poincaré map

Note that

a11 =
λ1e

2π
ω
λ2 − λ2e

2π
ω
λ2

λ1 − λ2
, a12 =

e
2π
ω
λ1 − e

2π
ω
λ2

λ1 − λ2
,

a21 = −a12, a22 =
(λ1 + b)e

2π
ω
λ2 − (λ2 + b)e

2π
ω
λ1

λ1 − λ2
,

where K has eigenvalues λ1,2 = α± iβ.

Here,

α = − b

2
, β =

√
1− b2

4
.

Also K has trace τ = 2e
2πα
ω cos

(
2πβ
ω

)
and determinant δ = e

4πα
ω .
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Numerics
For a period-p solution of our map P with one point in x > 0, this point is a fixed
point of P p

global ◦ Pdisc,R.

Maximal periodic solutions are those with exactly one point in x > 0 (such
periodic solutions are the most likely to be stable because the square-root
singularity is highly destabilising)
Since P p

global ◦ Pdisc,R is smooth, standard numerical methods like Newton’s
method can be used to follow fixed points while x > 0.
That is, given a guess for (x0, z0), we compute (y1, z1), (y2, z2), and (x3, z3), and
(x4, z4) = P p

global(x3, z3;F ). Then let G(x0, z0;F ) = (x4, z4)− (x0, z0) and
continue zeros of G.
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Numerics

However, Newton’s method fails near grazing because Pdisc,R contains
√
x (if

x < 0, the method blows up!).
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Numerics

So instead we guess (y1, z1), then compute (x0, z0), (y2, z2), and (x3, z3), and
(x4, z4) = P p

global(x3, z3;F ). Then let V (y1, z1;F ) = (x4, z4)− (x0, z0).

The function V maps the impact velocity and z-value to the variation (or change)
in displacement and z-value.
We call the function V as the VIVID function that follows the zeros of a function
mapping Velocity Into Variation In Displacement.
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One-parameter bifurcation diagram
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Two-parameter bifurcation diagram

We are able to compute the two-parameter bifurcation diagram because of our
new numerical tool.

The location of the codimension-two point is understood.

PD

SN
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Resonance

Branches of maximal periodic solutions emanate from the grazing bifurcation,
either to the left or the right, and Nordmark (Nonlinearity, 2001) showed that this
is determined by the values of τ and δ.

Figure: Division of the (τ, δ) plane.
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Resonance

The eigenvalues of K are complex, and thus can be written as λ1,2 = r exp(±iθ),
where r > 0 and 0 < θ < π.

Thus, we have τ = 2r cos(θ) and δ = r2.
The period-p solution changes from emanating to the left to emanating to the
right when sin(pθ) = 0.
In particular, for p = 1, codimension-2 points occur when β

ω = n
2 , for some n ∈ Z.

For p > 1, codimenison-2 points occur when β
ω = n± 1

2p , for some n ∈ Z
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Discussion

We have shown that the oscillator has a stable period-two solution near grazing
because it is near resonance.

We have developed a new numerical tool called VIVID using which the issue of
"numerical algorithms falling off the side of square-root near grazing" is
circumvented.
We produce two-parameter bifurcation diagrams showing curves of saddle-node and
period-doubling bifurcation emanating from a codimension-two grazing bifurcation.
However, it remains to unfold such codimension-two points theoretically (and we
have started to work on this). Hopefully, this can explain why the SN curve bends
away from Fgraz faster than the PD curve.
Would be intersting to see the behaviour when the damping ratio b limits to 0.
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Neurons as Dynamical units

Neurons represent the fundamental dynamical units of the nervous system

The dynamics of neurons, like firing of action potentials, can be modeled as simple
dynamical systems like ODEs or maps

Figure: Two neurons connected by a synapse. (Powered by DALL-E 3)
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Chialvo Map (Chialvo, 1995)

The two-dimensional neuron map is given by

xn+1 = x2ne
(yn−xn) + k0,

yn+1 = ayn − bxn + c.

The state variables x and y represent the activation variable and recovery-like
variable,
a, b, c and k0 are the system parameters,
a < 1 is the time constant of recovery,
b < 1 represents the activation dependence of the recovery process,
c denotes the offset, and
k0 is the time-independent additive perturbation.
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A Typical Phase Portrait
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Electromagnetic flux

We describe the effects of electromagnetic flux on the system of neurons with
memristors. The induction current due to electromagnetic flux is given by

dq(ϕ)

dt
=

dq(ϕ)

dϕ

dϕ

dt
= M(ϕ)

dϕ

dt
= kM(ϕ)x.

ϕ: electromagnetic flux across the neuron membranes,
k: electromagnetic flux coupling strength, &
M(ϕ): memconductance of electromagnetic flux controlled memristor.

We consider the following memconductance function:

M(ϕ) = α+ 3βϕ2.
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Improved Chialvo map under electromagnetic flux (Muni, Fatoyinbo, &
Ghosh, 2022)

Under the action of electromagnetic flux, the system of Chialvo map is improved to the
following map:

xn+1 = x2ne
(yn−xn) + k0 + kxnM(ϕn),

yn+1 = ayn − bxn + c,

ϕn+1 = k1xn − k2ϕn,

making the system a three-dimensional smooth map. The new variables α, β, k1, k2
represent the electromagnetic flux parameters.
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Multistability
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Bifurcation structures and antimonotonicity
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Figure: Bifurcation diagram of x with respect to k in panel (a). A maximal Lyapunov exponent
diagram is shown in panel (b).
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Bifurcation structures and antimonotonicity
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Figure: In (a) a stable fixed point is shown in the x− y − ϕ phase space for a = 0.838. After a
supercritical Neimark-Sacker bifurcation, an attracting closed invariant curve is born as shown
in (b) at a = 0.841. A chaotic attractor is then formed when a is increased to 0.88.
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Numerical bifurcation analysis

Table: Abbreviations of codimension-1 and codimension-2 bifurcations

Codimension-1
Saddle-node (fold) bifur-
cation

LP Neimerk-Sacker bifurca-
tion

NS

Period-doubling (flip) bi-
furcation

PD

Codimension-2
Cusp CP Chenciner CH
Generalized flip GPD Fold-Flip LPPD
Flip-Neimark-Sacker PDNS Fold-Neimark-Sacker LPNS
1:1 resonance R1 1:2 resonance R2
1:3 resonance R3 1:4 resonance R4
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Numerical bifurcation analysis
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Figure: (a) Codimension-1 bifurcation diagram with k as bifurcation parameter. (b)
Codimesion-2 bifurcation diagram in (k, c)-parameter plane. (c) Zoomed version of (b)
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Bursting and spiking features
Tonic spiking
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Regular spiking

Phasic bursting Periodic bursting

Chaotic bursting
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Discussion

We have introduced a three-dimensional Chialvo neuron map under the effect of
electromagentic flux.

We have performed numerical bifurcation analysis and portrayed different
codimension-1 and codimension-2 bifurcation patterns.
We aim to consider the model in a network and study the dynamical properties
under noise.
We also aim to study the influence of higher-order interaction (beyond piecewise
interaction) on the synchronization manifold of the network.
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The End

Thank you! Questions?
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