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Border-collision normal form

▶ Piecewise-linear maps arise when modeling systems with switches, thresholds and
other abrupt events.

▶ In our project, we study the two-dimensional border-collision normal form [H.E.
Nusse and J.A. Yorke, 1992], given by

fξ(x , y) =



[
τL 1
−δL 0

][
x

y

]
+

[
1
0

]
, x ≤ 0,[

τR 1
−δR 0

][
x

y

]
+

[
1
0

]
, x ≥ 0.

▶ Here (x , y) ∈ R2, and ξ = (τL, δL, τR , δR) ∈ R4 are the parameters.



Banerjee-Yorke-Grebogi region in parameter space
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Figure: Sketch of the parameter region ΦBYG [S. Banerjee, J.A. Yorke, and C. Grebogi. Robust
chaos. Phys. Rev. Lett., 80(14):3049– 3052, 1998.], with δL = δR = 0.01.



Phase portrait of a chaotic attractor

x

y

Y

X

Λ

Figure: A sketch of the phase portrait of fξ with ξ ∈ ΦBYG.



Renormalisation I

▶ Renormalisation involves showing that, for some member of a family of maps, a
higher iterate or induced map is conjugate to different member of this family of
maps.

▶ The renormalisation technique (Feigenbaum, 1970’s) proves that the bifurcation
values in period-doubling cascades for one-dimensional unimodal maps converge at
a constant rate (F ≃ 4.669 . . .), which is universal. For example, the logistic map
given by

xn+1 = µxn(1 − xn),

has the following bifurcation diagram.



Renormalisation II

Figure: Bifurcation diagram for the logistic map.



Renormalisation IV

▶ Let U denote the collection of all unimodal maps f : [−1, 1] → [−1, 1], with
maximum at x = 0, and with f (0) = 1. Then, the renormalisation operator
R : U → U is given by,

(Rf )(x) = −1
a
f 2(−ax),

provided, a = −f (1), b = f (a), 0 < a < b < 1 and f (b) < a.
▶ The fixed point of R is hyperbolic. One of its eigenvalues has modulus greater

than 1, and this eigenvalue is Feigenbaum’s constant F [Feigenbaum, 1975].



Renormalisation operator I

▶ Although the second iterate f 2
ξ has four pieces, relevant dynamics arise in only two

of these. We have

f 2
ξ (x , y) =



[
τLτR − δL τR

−δRτL −δR

][
x

y

]
+

[
τR + 1
−δR

]
, x ≤ 0,[

τ2
R − δR τR

−δRτR −δR

][
x

y

]
+

[
τR + 1
−δR

]
, x ≥ 0.

▶ Now f 2
ξ can be transformed to fg(ξ), where g is the renormalisation operator

g : R4 → R4, given by
τ̃L = τ2

R − 2δR ,

δ̃L = δ2
R ,

τ̃R = τLτR − δL − δR ,

δ̃R = δLδR .



Renormalisation operator II

▶ We perform a coordinate change to put f 2
ξ in the normal form :

[
x̃ ′

ỹ ′

]
=



[
τ̃L 1
−δ̃L 0

][
x̃

ỹ

]
+

[
1
0

]
, x̃ ≤ 0,[

τ̃R 1
−δ̃R 0

][
x̃

ỹ

]
+

[
1
0

]
, x̃ ≥ 0.



Results I

▶ We consider the parameter region

Φ =
{
ξ ∈ R4∣∣τL > δL + 1, δL > 0, τR < −(δR + 1), δR > 0

}
.

▶ The stable and the unstable manifolds of the fixed point Y intersect if and only if
ϕ(ξ) ≤ 0, where,

ϕ(ξ) = δR − (τR + δL + δR − (1 + τR)λ
u
L)λ

u
L.

▶ Banerjee, Yorke and Grebogi observed that an attractor is often destroyed at
ϕ(ξ) = 0 which is a homoclinic bifurcation, and thus focused their attention on the
region

ΦBYG = {ξ ∈ Φ|ϕ(ξ) > 0} .



Results II
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Figure: Sketch of the parameter region ΦBYG, with δL = δR = 0.01.



Results III

▶ For all n ≥ 0 let
ζn(ξ) = ϕ(gn(ξ)),

where ζn(ξ) = 0 is the nth preimage of ϕ(ξ) = 0 under the operator g .
▶ The regions Rn for all n ≥ 0 are thus generated, having the form:

Rn = {ξ ∈ Φ|ζn(ξ) > 0, ζn+1(ξ) ≤ 0}.



Results IV
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Figure: The sketch of two dimensional cross-section of Rn when δL = δR = 0.01.



Results V
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Figure: The sketch of two dimensional cross-section of Rn when δL = δR = 0.5.



Results VI
Theorem
The Rn are non-empty, mutually disjoint, and converge to the fixed point (1, 0,−1, 0)
as n → ∞. Moreover,

ΦBYG ⊂
∞⋃
n=0

Rn.

▶ Let,
Λ(ξ) = cl(W u(X )).

Theorem
For the map fξ with any ξ ∈ R0, Λ(ξ) is bounded, connected, and invariant. Moreover,
Λ(ξ) is chaotic (positive Lyapunov exponent).



Results VII

Theorem
For any ξ ∈ Rn where n ≥ 0, gn(ξ) ∈ R0 and there exist mutually disjoint sets
S0, S1, . . . ,S2n−1 ⊂ R2 such that fξ(Si ) = S(i+1) mod 2n and

f 2n
ξ |Si is affinely conjugate to fgn(ξ)|Λ(gn(ξ))

for each i ∈ {0, 1, . . . , 2n − 1}. Moreover,

2n−1⋃
i=0

Si = cl(W u(γn)),

where γn is a saddle-type periodic solution of our map fξ having the symbolic itinerary
Fn(R) given by Table 1.



Results VIII

n Fn(W)

0 R

1 LR

2 RRLR

3 LRLRRRLR

4 RRLRRRLRLRLRRRLR

Table: The first 5 words in the sequence generated by repeatedly applying the substitution
rule (L,R) 7→ (RR, LR) to W = R.



Results IX
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Summary

▶ We have used renormalization to explain how the parameter space ΦBYG is divided
into regions according to the number of connected components of an attractor.

▶ It remains to better understand the attractor R0 more and determine the analogue
of ΦBYG for higher dimensional maps.

▶ Our results have been submitted to Int. J. Bifurcation Chaos (arXiv:2109.09242,
2021).
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The End

Thank you! Questions?


