BIFURCATION STRUCTURE WITHIN ROBUST CHAOS FOR PIECEWISE-LINEAR MAPS. I. Ghosh, R. McLachlan, D.J.W. Simpson School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand

Introduction

Here I use geometry to explain robust chaotic dynamics in piecewise-linear (PWL) maps. PWL maps are used for modeling systems with switches, thresholds, and other abrupt events. We study the two-dimensional bordercollision normal form:

with variables $x, y \in \mathbb{R}$, and parameter vector $\xi = (\tau_L, \delta_L, \tau_R, \delta_R) \in \mathbb{R}^4$.

A renormalisation operator

Although the second iterate f_{ξ}^2 has four pieces, for many values of ξ only two of these are relevant:

$$f_{\xi}^{2}(x,y) = \begin{cases} \begin{bmatrix} \tau_{L}\tau_{R} - \delta_{L} & \tau_{R} \\ -\delta_{R}\tau_{L} & -\delta_{R} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \tau_{R} + 1 \\ -\delta_{R} \end{bmatrix} \\ \begin{bmatrix} \tau_{R}^{2} - \delta_{R} & \tau_{R} \\ -\delta_{R}\tau_{R} & -\delta_{R} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \tau_{R} + 1 \\ -\delta_{R} \end{bmatrix} ,$$

Then f_{ξ}^2 is equivalent to $f_{q(\xi)}$ under a change of coordinates, where g is the renormalisation operator defined by

$$\begin{aligned} \tilde{\tau}_L &= \tau_R^2 - 2\delta_R, \\ \tilde{\delta}_L &= \delta_R^2, \\ \tilde{\tau}_R &= \tau_L \tau_R - \delta_L - \delta_R, \\ \tilde{\delta}_R &= \delta_L \delta_R. \end{aligned}$$

The classical robust chaos parameter region

Robust chaos refers to the absence of periodic windows. We consider the parameter region

 $\Phi = \{ \xi \in \mathbb{R}^4 \mid \tau_L > |\delta_L + 1|, \ \tau_R < |\delta_R + 1| \},\$ where $f_{\mathcal{E}}$ has two saddle fixed points X and Y, see Fig. 1. Within Φ $\Phi_{\rm BYG} = \{\xi \in \Phi \,|\, \delta_L > 0, \delta_R > 0, \phi_4(\xi) > 0\},\$ where $\phi_4(\xi) = \delta_R - (\tau_R + \delta_L + \delta_R - (1 + \tau_R)\lambda_L^u)\lambda_L^u$, is the classical robust chaos parameter region of [1]. For all $n \ge 0$, define $\zeta_n(\xi) = \phi_4(g^n(\xi)),$

and

$$\mathcal{R}_n = \{\xi \in \Phi \mid \zeta_n(\xi) > 0, \zeta_{n+1}(\xi) \le 0\}$$

see Fig. 2. Our main result is that for all $n \ge 0$ and ξ
has a chaotic attractor with 2^n connected components [2]
was obtained by using the renormalisation operator and
unknown bifurcation structure within the robust chaos particular

 $\leq 0,$

 $\geq 0,$

 $, x \leq 0,$

 $x \ge 0.$

 $\xi \in \mathcal{R}_n$ the map f_{ξ} [2], e.g. Fig. 3. This nd reveals previously arameter region.

Fig. 1: A phase portrait with $\xi \in \mathcal{R}_0 \subset \Phi_{BYG}$, showing the initial line segments of the stable and unstable manifolds of the fixed points X and Y, as well as an additional segment of the stable manifold of Y. The attractor (computed numerically) is shown in black.

Invariant expanding cones

Chaos in Φ_{BYG} can be proved by constructing an invariant expanding cone, Fig. 4, in tangent space [3]. We have extended this to Φ ; Figs. 5 and 6 show parameter values for which we have been able to explicitly construct a trapping region and a cone. For any $\xi \in \Phi_{trap} \cap \Phi_{cone}$, f_{ξ} has a chaotic attractor [4].

Fig. 4: A sketch of an invariant expanding cone C and its image $AC = \{Av | v \in C\}, \text{ given } A \in \mathbb{R}^{2 \times 2}.$

Fig. 2: Two-dimensional cross-sections of the parameter regions \mathcal{R}_n , where \mathcal{R}_n is visible for all $n = 0, 1, \ldots, 4$. The region $\Phi_{\rm BYG}$ is bounded by $\tau_L = \delta_L + 1$, $\tau_R = -(\delta_R + 1), \, \zeta_0 = 0, \, \delta_L > 0,$ and $\delta_R > 0$.

 Φ_{trap} , showing curves $\phi_i(\xi) = 0$, for $\tau_L = 1.6$ and $\tau_R = -1.5$.

Extension to higher dimensions

In the N-dimensional setting, suppose the fixed point Y has exactly one unstable eigenvalue $\lambda_L^1 > 1$ and the fixed point X has exactly one unstable eigenvalue $\lambda_R^1 < -1$. We have been able to construct an N-dimensional trapping region in an open region of parameter space, see Fig. 7.

Fig. 7: Our trapping region construction is valid when the absolute values of the stable eigenvalues are all less than the indicated value of r.

Acknowledgements

The authors were supported by Marsden Fund contract MAU1809, managed by Royal Society Te Aparangi.

[1] S. Banerjee, J.A. Yorke, 80(14):3049–3052, 1998. [2] I. Ghosh, and D.J.W. Sir 32(12):2250181, 2022. [3] P.A. Glendinning, and D.J.W. 41(7):3367–3387, 2021. [4] I. Ghosh, R. McLachlan, and tion for robust chaos in two-dimensional piecewise-linear maps. In preparation.

for $\tau_L = 1.6$ and $\tau_R = -1.5$.

ferences
and C. Grebogi. Phys. Rev. Lett.,
mpson. Int. J. Bifurcation Chaos,
Simpson. Discrete Contin. Dyn. Syst.,
D.J.W. Simpson. A generalised construc-