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Dynamical systems (ODEs)
1. ODEs : Ordinary Differential Equations. 

2. Rate of change of a physical quantity over 
time. 

3. Generates a data of time series, given an initial 
time stamp. 

Fig. Newton and Leibniz (Wikipedia)



Neurons

Fig. A typical synapse (theory.labster.com/synapses/)

1. Neurons are the fundamental units of 
the nervous system. 

2. Billions of neurons couple through 
‘synapses’ to form a cluster of a 
highly complex neural mass. 

3. Their mechanism evolves in time. 

4. Thus can be perceived as a 
`dynamical system’.



Chaos
1. In popular term a ‘state of disorder’. 

2. In mathematical term, it must be sensitive to 
initial conditions and have a dense orbit in the 
phase space. 

3. Chaotic systems behave predictably in the 
beginning before becoming random. 

Fig. Double-rod pendulum exhibiting chaos 
(Taken from https://medium.com/
@bharatambati/how-the-double-pendulum-
creates-simple-chaos-ac49a297fb4d)



      Packages



Single neuron (Schaeffer & Cain, 2018)
1. Simple mathematical model. 

2. Parameters selected from empirical 
experiments. 

3. Captures realistic bursting in neurons. 

4. Portrays a battery of complex 
dynamics. 

5. Use `solve_ivp()`function from 
`scipy.integrate` suite to solve initial 
value problem. Fig. Phase portrait and time series



Simulate a single neuron (code snippet)

For the time integration of the differential equations, we use 
method = ‘RK45’ which is the explicit Runge-Kutta scheme 
of order 5(4).



Coupled neurons

Fig. Coupled neurons (https://theory.labster.com/synapses/), and typical electrical 
and chemical synapses (theory.labster.com/electrical-synapses/)



Toy models of coupled neurons

Fig. Electrical (gap-junction) coupling Fig. Chemical coupling

Fig. Electromagnetic coupling

Coupling term



Simulating coupled neurons



Time series tools
1. Hurst exponent (H): measuring 

persistence. 

2. Sample entropy (SE): measuring 
complexity. 

3. 0-1 test (K): measuring chaos. 

4. Cross-correlation function (Γ): 
measuring synchrony between neurons. 

5. Kuramoto order parameter (B): 
measuring synchrony between neurons.

Fig. Applying various tools on the time series generated 
from simulating the models of coupled neurons. 



Hurst exponent (Hurst, 1951)
1. Measures the long-term memory/persistence in time series. 

2. Computed using rescaled-range analysis (Qian and Rasheed, 2004). 
 
 

3. H ∈ [0,1]. 

4. H ∈ [0,0.5): anti-persistence (negative dependence on previous values), H ≈ 0.5: random 
walk, H ∈ (0.5,1]: positive dependence on previous values.



Sample entropy (Richman & Moorman, 2000)
1. Assesses the complexity of time series data. 

2. It is the negative natural log of the probability that if two sets of simultaneous data points of 
length ‘p’ have distance less than ‘ε’, then the similar thing happens to two sets of 
simultaneous data points of length ‘p+1’. 
 
 

3. A higher SE indicates higher complexity. 

4. Can be normalised between 0 and 1.



‘nolds’      package (Scholzel, 2019)
1. Stands for ‘NOnLinear measures for 

Dynamical Systems’, based on        . 

2. Provides functions for directly 
implementing the rescaled-range based 
Hurst exponent and also sample 
entropy to time series. 

3. Functions are `nolds.hurst_rs()` and 
`nolds.sampen()`. 

4. Also provides other sophisticated tools 
for nonlinear measures.



0-1 test (Gottwald and Melbourne, 2009, 2016)
1. Compute two translated variables from the time series. 

 
 
 
 

2. Then compute a mean square displacement term ‘m(t; e)’ and a correction term. 

3. Compute the growth rate ‘K’ that quantifies ‘chaos’. 

4. ‘K ≈ 0’ indicates regular dynamics and ‘K ≈ 1’ indicates chaos.



A         package for 0-1 test
1. Translated to          . 

2. Used `curve_fit()` and `fsolve()` 
functions from the `scipy.optimize` 
suite. 

3. Used `pearsonr ()` function to 
compute Pearson’s correlation 
coefficient from `scipy.stats’ suite 
in one of the steps.



Cross-correlation coefficient (many authors)
1. For two time series from nodes ‘i’ and 

‘m’, Γ is given by 
 
 

2. The average is calculated over time and 
the variation from the mean is 
 

3. |Γ| = 1 indicates total synchrony and |Γ| 
< 1 is asynchrony. Moreover, Γ = 1 
represents in-phase synchrony and Γ = 
−1 represents anti-phase synchrony.



Kuramoto’s order parameter (Kuramoto and Battogtokh, 
2002)
1. Phase of a neuron ‘m’ is  

 

2. The complex valued Kuramoto index B is then 
 

3. The index at time ‘t’ is then 
 
 

4. When B = 1, this means the nodes are all fully coherent and their 
phases are all locked. Any value B < 1 represents incoherence. 
 
 



Results from gap-junction coupling



Results from chemical coupling



Results from electromagnetic coupling



Plots with varying coupling strength



Separate experiment from visualization
1. An extra step for data processing before 

visualization  

2. This is where          comes handy! And it’s 
worth it! 

3. Read “Taming the Chaos of Computational 
Experiments” by T. G. Kolda for more on 
this: siam.org/publications/siam-news/
articles/taming-the-chaos-of-computational-
experiments/ 



Visualization using 



Summary
1. Coupling induces ‘chaos’ in the inhibitory regime. 

2. Excitatory coupling and its more positive values drive the coupled system into exhibiting 
bursting. Also, both neurons synchronize. 

3. In electromagnetic coupling, excitatory coupling drives the system to decay oscillation, 
falling into a symmetric equilibrium point. 

4. Future work: move to GPU accelerated framework using `CuPy`:  

5. Future work: use a complex network of neuron and integrate `NetworkX`: 
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